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Abstract

The feasibility of reducing the interior noise levels of an aircraft passenger cabin

through an optimization of the composite lay up of the fuselage is investigated.

MSC/NASTRAN, a commercially available finite element code, is used to perform the

dynamic analysis and subsequent optimization of the fuselage. The numerical calcu-

lation of sensitivity of acoustic pressure to lamination angle is verified using a simple

thin, cylindrical shell with point force excitations as noise sources. The thin shell is

used because it represents a geometry similar to the fuselage and analytic solutions are

available for the cylindrical thin shell equations of motion. Optimization of lamination

angle for the reduction of interior noise is performed using a finite element model of

an actual aircraft fuselage. The aircraft modeled for this study is the Beech Starship.

Point forces simulate the structure borne noise produced by the engines and are applied

to the fuselage at the wing mounting locations. These forces are the noise source for the

optimization problem. The acoustic pressure response is reduced at a number of points in

the fuselage and over a number of frequencies. The objective function, to be minimized,

is the maximum sound pressure level at all response points in the passenger cabin and

for all excitation frequencies in the range of interest.

Results from the study of the fuselage model indicate that a reduction in interior

noise levels is possible over a finite frequency range through an optimal configuration of

the lamination angles in the fuselage. Sound pressure level reductions of roughly 4 dB

were attained at multiple locations in the passenger cabin. For frequencies outside the

optimization range, the acoustic pressure response may increase after optimization. The

effects of changing lamination angle on the overall structural integrity of the airframe

are not considered in this study.
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Chapter 1 Introduction

Since their design and development in the early 1960's, composite materials have

played an increasingly important role in the design and construction of many different

vehicles and structures [1]. As defined in Jones [2], a composite material consists of "two

or more materials.., combined on a macroscopic scale to form a useful material." The

material properties of composite materials are such that they generally have very favorable

strength-to-weight and stiffness-to-weight ratios [2]. In many cases, the use of composite

materials has substantially improved the performance of the structure over what could

be attained using conventional materials. Not surprisingly, composite materials have

found wide application in the construction of aircraft and spacecraft, vehicles for which

performance is very sensitive to changes in weight.

Although the use of composite materials offers several advantages over conventional

materials, several disadvantages are also apparent. From a design standpoint, one must

be careful to account for the anisotropic characteristics typically displayed in composite

materials. While a composite structure might have great strength in one direction, it

may be structurally weak in another. Often times, it is possible to take advantage of

anisotropic behavior and tailor a structure to meet a specific design requirement.

With the increasing use of composite materials in the construction of aircraft, interest

has been expressed in reducing the interior sound pressure levels of passenger aircraft

built from these materials. Work by Koval for a thin composite cylindrical shell [3]

indicated that, from the perspective of noise reduction, use of composite materials in

an aircraft fuselage may enable an aircraft designer to modify the transmission loss

characteristics of the fuselage to meet a specific noise requirement. In a noise reduction

example for a composite shell from this work, the author discussed the possibility of



using the laminationanglesto attenuatenoisetransmissionthroughthe structureover a

specificfrequencyrange.However,lesssatisfactoryacousticcharacteristicsfor the shell

may result in other frequencyrangesandwouldhaveto beaddressedusingconventional

soundproofing measures.

Aircraft fuselageshave been modeled as thin, cylindrical shells as a means of

understandingthe coupling of the structural vibration modesto the acousticmodesin

the fuselageinterior [4]. The thin, cylindrical shell hasbeenusedbecausean analytic

solution describingits motion can be derived. The sameis not true for most aircraft

structures.

Salagameet al. [5] developed analytical expressions for the sensitivity of the acoustic

power emitted by a vibrating flat plate to a change in one of the design variables of the

plate. These analytical sensitivities were compared to a numerical optimization to reduce

the acoustic power radiated by a clamped, isotropic plate through an optimal thickness

distribution through the plate. This work demonstrated the feasibility of using acoustic

sensitivities to structural attributes in a noise reduction optimization.

Lamancusa [6] discusses many different objective function formulations for the

reduction of radiated noise from a clamped, isotropic plate in which thickness is allowed

to vary. In this work, the author develops objective functions based on various acoustic

measures such as radiated sound power, mean-square velocity, and modal radiation

efficiency. The importance of proper objective function, design constraints, and design

variables is discussed in this work. A poorly specified optimization problem can make

it difficult to attain convergence to a global optimum with an optimization algorithm. In

a slightly different approach, Naghshineh et al. [7] first specified a minimum radiation

condition for a beam radiating in a rigid baffle. Then, an optimal distribution of Young's

modulus and density for the beam was found to force the beam to vibrate in the minimum
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radiation mode.

Recentresearchhasbeenundertakento structurallyoptimizethethicknessdistribution

of anisotropiccylindrical shellfor thepurposeof minimizing theinterior noiselevels [8,

9]. Noise levels for a singleexcitationfrequencyweresuccessfullyreducedthroughthe

generationof anoptimum thicknessdistribution aroundand along the cylindrical shell.

In thiswork, theauthorsnoteda strongdependanceof the final optimumsolutionon the

startingvaluesof the designvariablesof the problem.

For cylindrical shellsmadefrom laminatedcompositematerials,considerablework

has beendone in the study of the optimization of laminationangle to maximize the

buckling strength.Thework of Rao[10] andthe work of Hu [11] eachdemonstratedthe

ability to increasethebucklingpressureof athin, cylindricalshellthroughanoptimization

of anglefor a varietyof boundaryconditions.Manycompositecylinderbuckling studies,

including thoseof Hu,havebeenundertakenthroughtheuseof thefinite elementmethod.

MSC/NASTRAN1, a commercially available computer code, has been used as a

tool for the prediction of aircraft interior noise in a number of earlier studies [13, 14].

However, these studies have used the so-called structural-acoustic analogy [15] as a

means of calculating the acoustic pressure response of the fluid. Recent upgrades to the

MSC/NASTRAN computer code allow the user to model the fluid and compute acoustic

responses directly. Work by Fernholz et al. [16] demonstrated the feasibility of using

a fully-coupled fluid/structure analysis for a cylindrical model. More importantly to

the current work, this feature makes it feasible to optimize the model using acoustic

responses as design variables or objectives.

The objective of the present study is to demonstrate the feasibility of sound pressure

level reduction through an optimal lamination angle configuration in a composite aircraft

1 NASTRAN is an acronym standing for NASa STRuctural ANalysis [12].



fuselage. To achieve this reduction, the lamination angles in the fuselage are optimized

over a range of excitation frequencies. Unlike previous studies, the geometry of an actual

aircraft, rather than a cylindrical shell, is used in the optimization analysis. The aircraft

used is the Beech Starship, an eight- to ten-person twin turboprop aircraft. The Starship

is modeled and analyzed using the finite element method. Loads simulating the structure-

borne noise produced by the engines are applied to the model. MSC/NASTRAN is used

to perform the finite element analysis and subsequent lamination angle optimization. The

effects of changing lamination angle on the overall structural integrity of the airframe

are not considered in this study.

This study is divided into five chapters. The methodology and theory of the finite

element solution method and ply-angle optimization is outlined in Chapter 2. In Chapter

3, this methodology is applied to a thin, orthotropic cylindrical shell. Analytical solutions

for the motion of the cylinder are given. The numerical solutions and design sensitivities

are compared with analytical solutions from classical thin shell theory. In Chapter 4, the

methodology developed in Chapter 2 is applied to the Beech Starship fuselage. Because

an analytical solution for the motion of the fuselage is not available, only a numerical

analysis is performed. Finally, Chapter 5 contains a discussion of the results of this

work. Appendices include a derivation of a solution to the Donnell-Mushtari equations

of motion for a thin cylindrical shell composed of specially orthotropic materials, figures

related to the current work, and complete output data for all the response locations used

in this study.
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Chapter 2 Theory and Methodology

Because of the complexity of the aircraft fuselage and interior fluid system, much of

this work was necessarily dependent upon numerical methods of analysis. In particular, a

fully-coupled finite element method was used to model both the aircraft structure and the

air inside the passenger cabin. MSC/NASTRAN, the computer code used to perform the

finite element analysis, was also used to optimize the lamination angles of the fuselage

composite material for the reduction of the aircraft interior noise levels.

In this chapter, methods of solving a finite element problem for a system containing

both fluid and structural components are outlined. As the finite element modeling method

is quite common and well understood, only the solution methods are provided here. For

more detail regarding finite element theory, the reader is referred to the literature [12,

17, 18].

Less common in standard engineering practice, but more critical to this particular

work, is design sensitivity and optimization. Therefore, more of this chapter is devoted

to understanding these methods than to finite element analysis. In particular, close

attention is given to the specification of the objective function and constraints within

MSC/NASTRAN.

2.1: Finite Element Solution Methods

The equation of motion for a structure for the eigenvalue problem is written as [18]

+ [Ks]{,,}= 0 (1)

where [Ks] represents the stiffness matrix of the structure, [Ms] the mass matrix, and {u }

the displacement vector for the structural element nodes. Assuming a harmonic solution



for {u }, Equation (1) becomes

([Ks]- _[Ms]){_} = o (2)

where {as} represents the structural eigenvectors of the system. The eigenvalues A of

the problem are related to the natural frequencies through

2 (3)

where ton represents the natural frequencies of vibration in rad/sec [19]. For this work,

the Lanczos method was used to calculate the eigenvalues of the system because it usually

represents the best solution method for problems having a large number of degrees of

freedom [19].

For a frequency response analysis, the equation of motion of the structure is written

as [181

[M,]{a}+ [B,]{_,)+ [K,]{_,}= _"[F(_)] (4)

where the F(w) represents a harmonic excitation to the structure and [Bs] represents

the damping matrix for the structure. If a steady-state harmonic solution is assumed,

Equation (4) becomes

(-_[M,] + _o[B,]+ [K,]){u(_,)}= [F(_,)] (5)

Here, w represents the excitation frequency of the system.

Fluids are modeled using three-dimensional elements having one degree of freedom

at each node, that degree of freedom being the acoustic pressure. The equation of motion

for the frequency response analysis of the fluid is [20]

[v,] {/_}+ [Ks]{p}+ ps[cl{a} = [o] (6)
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where [Mf] is the acoustic "mass" matrix and [Ky] the acoustic "stiffness" matrix. The

[C] matrix couples the motion of the structure to the acoustic pressure in the fluid. At

the fluid-structure interface, the boundary condition for the fluid is

Op 02un
On- py Ot 2 (7)

where n is the unit outward normal vector to the surface of the structure, pf is the density

of the fluid, and Un is the displacement of the structure in the normal direction. This

boundary condition is reflected in the third term of Equation (6). The fluid in turn affects

the motion of the structure by applying forces over the structural surface area of [21 ]

{F,}= - {p}

The coupled equations of motion for the fluid and structure are thus [21]

[pfMh _]{_}+[B, a](_}+[K0,-CKT]{Up}=ei.t{F_w)} (9)

Two methods of solution can be used to solve the frequency response problem

The direct method essentially solves Equation (9) as shown for discrete excitation

frequencies [19]. This method, while generally accurate for a wide variety of structural

configurations, can be computationally expensive, particularly for a large number of

excitation frequencies.

The second method that can be used to solve the frequency response problem is the

modal method. In this method, the physical variables of the problem (p, u) are assumed

to be a linear combination of the uncoupled acoustic and structural modes

[u]
(10)

[,%o)]

where _s are the uncoupled eigenvectors of the structure, t_f the uncoupled eigenvectors

of the fluid, and {s and (f are the modal amplitudes for the structure and fluid respectively.



Note thatEquation(10)becomesanequalityif all themodesof the systemareused[19].

However, this is typically not done. Substitutingthis relation into Equation (9) and

pre-multiplying by the transposedtransformationmatrix yields [20]

[,TKos_S _q?Tar_f ] {ggT_(w) (11), }
This system of equations is solved in using the direct frequency approach described

above. The number of modes used in this solution is usually much less than the number

of physical variables in the system and the use of this method can represent a substantial

computational savings over the direct method [19]. However, a modal truncation error is

also associated with this method. Care must be taken to ensure that a sufficient number

of modes are used to reduce the truncation error to an acceptable level.

2.2: Design Sensitivity and Optimization

In general, design sensitivity is the change of a structural or system response with

respect to changes in a design variable. Design optimization is the process of generating

improved designs subject to certain constraints and criteria [22]. Sensitivity analysis and

design optimization are closely related, particularly in computer implementations, as the

responses computed in the sensitivity analysis can be used in the optimization algorithm

to determine the search direction for the objective function.

The ij-th design sensitivity coefficient Aij is defined as

8rj

Aii = _x-_x/I_o (12)

where rj is the j-th response and Xi is the i-th design variable. The sensitivity coefficient

is calculated for the £'o vector of design variables [22].

The following components are included in the basic statement of a design optimization

problem [23]:



Objective Function

Minimize F(_) subject to

Inequality Constraints

gj(Z) <_ 0 j ---- 1,2,...,ng

Equality Constraints

hk(:_) = 0 k = 1,2,...,nh

Side Constraints

z < xi < u i= 1,2, n whereX i _ X i •..

Design Variables

= {xl,=2,...,x,}

Here, the objective function represents the attribute of the system which the user is

trying to minimize. The design variables are the components of the model which the

user can change in order to minimize the value of the objective function. The equality

and inequality constraints limit the values that the objective function can assume. That

is, they limit the range over which the user can search for an optimum value for the

objective function. Likewise, the side constraints limit the values of the design variables

for the problem.

In a design optimization problem, the MSC/NASTRAN optimizer uses the design

sensitivity and objective function gradients to locate a global objective function minimum.

When no constraints are active or violated, the Method of Steepest Descent is used [22].

However, this method is not particularly robust and there is often difficulty in converging

to an optimum value when using the Method of Steepest Descent. Thus, on subsequent

iterations, or for design cycles in which constraints are active or violated, the Modified

Method of Feasible Directions is used. With this method, one of the constraints is

9



followed until a global optimumfor the objective function is found. During the process

of finding this value, some of the constraints for the problem can be slightly violated [22].

For more information regarding these methods, the reader is referred to the literature [22,

23, 24].

The MSC/NASTRAN design cycle flow is as shown in Figure B 1. At the start of each

cycle, a full finite element analysis of the model is performed. The finite element data is

then used to develop an approximate representation of the model. The approximate model

is constructed using first-order Taylor Series expansions for the responses in the system

[22]. This approximate model is used for the calculation of the design sensitivities and

constraints for the current design cycle. Furthermore, the approximate model contains

a reduced number of constraints which in turn improves the efficiency of the optimizer

calculation [22]. Next, a check for hard convergence is performed and, if satisfied, the

optimization algorithm exits. If the conditions for hard convergence are not satisfied,

the optimizer performs an optimization using the data in the approximate model. After

completion of optimization, the optimizer checks for soft convergence. If the criteria for

soft convergence are satisfied, the optimizer exits. If not, the model is updated based on

the results of the optimization and a finite element analysis of the model is performed

to begin the next design cycle [24].

Convergence with the MSC/NASTRAN optimizer can be attained in a number of

ways. First, hard convergence can be attained if the Kuhn-Tucker conditions are satisfied.

Satisfaction of these conditions indicates that a local optimum value for the objective

function has been reached. Hard convergence can also be attained if the maximum

number of design cycles for the optimizer is reached, or if no feasible solution for the

optimization problem exists. Soft convergence is attained if the absolute or the relative

change in the value of the objective function is less than some minimum value from one

10



design cycle to the next [22].

2.3: Optimization Problem for the Present Work

It was desired to reduce the noise levels inside the aircraft below an initial, baseline

pressure at a number of response locations and for a number of excitation frequencies.

To accomplish this, the objective function was chosen to represent the maximum acoustic

response for the set of response locations over a range of excitation frequencies spec-

ified for the problem. The value of the objective function was then minimized at all

response points in the cabin and for all excitation frequencies in the range of interest.

Mathematically, the optimization problem can be written

Minimize OBJ with

OBJ(¢k) max 101og10 _ Prey ) j,_

_b= {¢1,¢2,.. • ,¢k} (14)

where the design variables for the problem, Ck 2, represented the composite lamination

angles and OBJ represented the maximum sound pressure level at the j response locations

in the problem over the range of frequencies w.

The objective function was specified in this manner so that the sound pressure level

at several excitation frequencies could be reduced. Had the objective function been

formulated to reduce the acoustic pressure response directly, it would have been feasible

to do so only for a single frequency. However, by setting the objective function equal

to the maximum response in a set of locations and frequencies, the sound pressure

levels at several frequencies were included as a design response and included within

the optimization calculation (see Figure B2).

2 The lamination angles for composite material lamina are commonly denoted in the literature (e.g. Jones [2]) by the Greek letter
0. However, this work uses 0 as the circumferential coordinate in the cylindrical coordinate system. To avoid confusion, ¢
was chosen to represent lamination angle.
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Chapter 3 The Thin, Cylindrical Shell

Before applying the methodology described in Chapter 2 to the Beech Starship

fuselage, this analysis was applied to a thin, cylindrical shell. The thin cylindrical

shell shares some geometric similarities with the fuselage, but, unlike the fuselage, it

is possible to write closed form solutions to the equations of motion of the cylinder.

These solutions are used to ascertain the extent of the modal truncation errors in the

numerical modal solution and as a check on the numerical design sensitivity calculations

for the optimization problem.

The Donnell-Mushtari theory is applied to a thin, open, circular cylinder having

dimensions similar to those of the Starship passenger cabin section and composed of

a single-layer, specially orthotropic material. A cylindrical coordinate system is used

to describe the model with the origin located at the center of one of the open ends of

the cylinder. The positive x-axis is located along the axis of the cylinder. The ends

of the cylinder are simply supported in the circumferential and radial directions and are

unsupported in the axial direction. Structural endcaps are not included in the model.

Boundary conditions of p=0 are applied to the fluid at the open faces at each end of

the cylinder. Two harmonic, in-phase point forces of equal magnitude are applied to the

cylinder. The forces are located 180 ° apart circumferentially and at one-half the length

of the cylinder axially. The radial motion of the cylinder is coupled to the motion of

the fluid inside the cylinder and an analytical relation describing the acoustic pressure

at any point in the fluid is derived. Numerical modal and direct solutions are compared

to the analytical solution.

The last analysis performed on the composite cylinder is a sensitivity analysis of the

acoustic pressure response of the fluid inside the shell with respect to ply angle for angles

12



near zero degrees.To determinethis sensitivityanalytically, it is necessaryto use the

cylindrical equationsof motionfor a generallyorthotropicmaterial.To includetheeffect

lamination anglehason bendingtermsin the equationsof motion, it is alsonecessary

to use the Love-Timoshenkoequationsfor the motion of a thin shell. A solution for

the generallyorthotropicmaterialis not developed.However,for laminationanglesof

zero degrees,the generallyorthotropicmaterialbecomesspeciallyorthotropic,and the

solutiondevelopedfor thosematerialscanbeusedto find the sensitivity of pressureto

laminationangle.Comparisonof the numericalsensitivityto the analyticalsensitivityis

made,and a differencebetweenthe two solutionsis manifested.

3.1: The Specially Orthotropic Thin, Cylindrical Shell:

Displacements and Pressures

As shown in Appendix A, a solution for the specially orthotropic thin cylindrical

shell equations of motion can be written

oo (3o

u(0, : Z u,.. cos ¢os(n0)
m----0 n=0

oo oo

v(O,x,t) = eiwt E EVmnsin(Ams) sin(nO) (15)
m=l n=O

oo oo

ra=l n=0

where u, v, and w represent the axial, circumferential, and radial displacements of the

shell.

The acoustic pressure at any point in the fluid within the shell is given as

oo oo

p(r,O,x,t) = e i°_* E E Pmn4(amr) sin(AmS)Cos(nO) (16)
m=l n=l

In the derivation for the acoustic pressure within the shell, a partially-coupled solution

between the structure and the fluid has been assumed. The structure influences the

behavior of the fluid, but not vice versa. In MSC/NASTRAN, a fully-coupled response

13



is computed.For mostaircraft-typestructures,the back-pressureforceson the structure

canbe neglected[25]. An explodedview of the fluid-structureproblemas formulated

abovefor the thin cylindrical shell filled with air is shownin Figure B3. Also shown

are the appliedforces for this problem.

Thefinite elementmodelwasconstructedusingquadraticquadrilateralelementswith

2464nodesfor the structureand quadraticpentahedralelementswith 20,501nodesfor

the fluid. The structural elementshad five degreesof freedom at each node (three

displacementsand two rotations) and the fluid elementshad one degreeof freedom

(pressure)at eachnode. The fluid and structurenodeswere matchedone-to-oneon the

surfaceswheretheywerein contact.For thestructuralelementsin themodel,a structural

dampingvalueof 1%of critical wasappliedwhile thefluid elementsremainedundamped.

This finite elementmodel is shown in figure B4.

A comparisonof theanalyticalandnumericalfrequencyresponsesis shownin Figures

B5, B6, B7, and B8. Figure B5 shows the numerical modal solution calculated using

MSC/NASTRAN for the radial displacement of a point on the shell verses the excitation

frequency of the applied forces. Also shown in this figure is the analytical solution

derived in Appendix A. The numerical solution used 1000 structural vibration modes in

a range from 0.0 Hz to 499.67 Hz to compute the structural response. For comparison,

the analytic solution used 1600 modes. This range of frequencies was chosen to ensure

that a sufficient number of modes were specified for the excitation frequency range of

interest (1.0 to 150.0 Hz). In general, there is good agreement between the analytical and

numerical models for the cylinder. There are several reasons why the agreement between

the two responses is not as close at the higher frequencies of the range shown. First, the

number of elements in the model may be insufficient to capture the higher-order mode

shapes of the response. Secondly, different shell theories are used for the numerical and

14



analytical solutionsand the analytical model is partially-coupled,while the numerical

model is fully-coupled.Also, someof thedifferencesin theresponseamplitudesmaybe

attributableto the moderatelylight dampingwhich wasapplied.

The comparisonbetweenthe analyticalandnumericalsolutionsfor soundpressure

level at a point in the fluid is shownin Figure B6. A total of 300 fluid modesover a

rangeof 41.52Hz to 627.2Hz wereusedin the numericalsolutionto representthe fluid

response.As wasthecasefor the structuralresponse,this rangewaschosento minimize

the modal truncationerror for the excitationfrequencyrange of interest. The major

responsepeaksof the systemarecapturedby both methods. However,a discrepancy

betweenthe two solutionsis apparentat approximately105Hz. The analyticalsolution

showsa responsepeakin this region,but thereis no correspondingpeakin thenumerical

solution. Likewise there are substantialdifferencesbetweenthe two solutions in the

amplitudesof the first two responsepeaks.Thesedifferencescanagainbe attributedto

the reasonsoutlined abovefor the solutionsfor the structuraldisplacement.

FiguresB7 andB8 showasimilar comparisonfor thesamemodel. For thesefigures,

thenumericaldirectfrequencyresponseis plottedversesexcitationfrequency.The direct

responsewas computedfor two smallerfrequencyranges,one from 20 to 60 Hz and

the other from 90 to 110 Hz. This was donebecausea direct frequencyresponseis

computationallymoreexpensivethan a modalsolution,particularly if the model has a

largenumberof degreesof freedom,or if responsesfor anumberof excitationfrequencies

aredesired. The first frequencyrange, 20 to 60 Hz, was chosento seehow well the

numericalsolutionwould resolvethe fluid responsenear41 Hz. The secondfrequency

range,90 to 110Hz, waschosento comparethe analyticalandnumericalsolutionsfor

the anti-resonanceat approximately100 Hz.

From Figure B7, a close agreementbetweenthe analytical and numerical finite

15



elementsolutionsis againapparent.Both solutionscapturethe vibration characteristics

of the structureover the rangeof excitationfrequencies.Thereare slight differences

betweenthe two solutions,againattributableto differencesin the shell theoriesusedfor

eachsolution method. Figure B8 showsthe acousticresponsefor a point in the fluid

interior to the shell. A close agreementis notedbetweenthe analyticaland numerical

direct solutions.

From an analysisof thesemodels,it canbe concludedthat the numericalsolutions

calculatedusingthefinite elementmethodprovidesasolutionverycloseto that predicted

by analyticalmodels,particularlyfor thestructuralportionsof thesystem.However,care

must be exercisedwhenusingthe modalsolutionmethod. Onemust ensurethat modal

truncationerrorshavebeenminimized,or at leastreducedto anacceptablelevel. As a

checkon the modal solution for caseswhere an analyticalsolution is not available, it

may be advisableto run a direct solutionover the frequencyrangeof interest.

3.2: Analytical and Numerical Pressure Sensitivities

to Composite Lamination Angle

The shell equations of motion for a single-layer, generally orthotropic material were

used to develop an analytical model of the sensitivity of acoustic pressure to lamination

angle. To account for the effect lamination angle has on the bending terms in the

equations of motion, the Love-Timoshenko equations were used. A general solution

for the generally orthotropic equations was not developed, but for a lamination angle of

zero degrees, the shell material becomes specially orthotropic, and the solution developed

in Appendix A for specially orthotropic materials can be used. This solution was used to

calculate the sensitivity of the acoustic pressure to a change in lamination angle at zero
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degrees.Throughcomparisonto Equation(12),weseethatwe areessentiallycalculating

Op

= I =0o (17)

If this quantity is positive, then the acoustic response inside the shell will increase as the

lamination angle is changed from zero degrees.

The Love-Timoshenko equations of motion for a single-layer generally orthotropic

thin cylindrical shell can be written [29, 26]

Lll L12 L13

L21 L22 L23

L31 L32 L33

u

A22
(18)
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and
h

h

h

Bij = f (0ij_d_ (20)

h

h

Dij / - 2=
h

h 2
h represents the lamina thickness, s = _, k = i%r, and (0ij represents the ij --th reduced

stiffness in the global coordinate system. The Aij, Bij, and Dij terms are commonly

denoted in the literature [26] as the stretching, bending-stretching coupling, and bending

submatrices, respectively. The B/j submatrix has been included here for completeness.

For a single-layer laminate, such as the cylinder used in this chapter, the Bij submatrix

becomes zero.

The principal material axes of an orthotropic material are not, in general, aligned

with the natural body axes of a given problem (see Figure B9). The lamination angle

¢ relates the reduced stiffnesses in the global coordinate system to the stiffnesses in the

material coordinate system. These relations are written [2]

(011 = Qll cos4 ¢ + 2(Q12 + 2Q66) sin 2 ¢cos 2 ¢ + Q22 sin4 ¢

(012 = (Qla + 022 - 4Q66) sin 2 ¢cos 2 ¢ + Q12(sin 4 ¢ + cos4 ¢)

Q22 = Qn sin 4 ¢ + 2(Q12 + 2Q66) sin S ¢ cos 2 ¢ + Q22 cos 4

(21)

Q16 = (Qll - Q12 - 2Q66) sin ¢ cos 3 ¢ + (Q12 - Q22 + 2Q66) sin 3 ¢ cos

(026 = (Qll - Q12 - 2Q66) sin3 _ cos _ q- (Q12 - Q22 + 2Q66) sin ¢ cos 3

(066 -- (Qll q- Q22 - 2Q12 - 2Q66) sin 2 ¢cos 2 ¢ + Q66(sin4 ¢ + cos 4 ¢)

where the bar over the Qq indicates that the reduced stiffnesses have been transformed

to the global coordinate system. The angle ¢ represents the angle between the global
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x-axis andthelocal 1-axis,measuredcounterclockwisefrom the x-axis [27]. Note that

for ¢=0 ° and ¢=90 °, the material becomes specially orthotropic.

ap
Figure B10 shows a comparison between analytical and numerical solutions of

versus frequency for ¢=0 ° in the thin, cylindrical shell. For this case, the numerical

solution is a direct frequency response. Figures B11 and B12 show the analytical radial

displacement of the shell and the acoustic pressure response of the fluid respectively at

the same location as the sensitivity shown in Figure B 10. Each of these figures shows a

response over the frequency range 20 to 50 Hz. The range of excitation frequencies was

chosen because it contained both structural and acoustic resonances.

From these figures, it is evident that the greatest sensitivity of acoustic pressure to

lamination angle is displayed in the vicinity of the resonant peaks of the system. For this

frequency range, the resonant responses occur at approximately 24.70 Hz (structural mode

1,6), 32.05 Hz (structural mode 1,4), 41.52 I-Iz (fluid mode 1,0,1), and 47.58 Hz (structural

mode 1,10) 3. There is good agreement between the analytical and numerical sensitivities.

In particular, the peaks in the sensitivities occur at roughly the same frequencies and the

signs of the sensitivities are the same between the solutions. To simplify the analytical

solution, damping was not applied to either the numerical or the analytical solutions. The

absence of damping is likely the cause of the difference in the sensitivity amplitudes.

A difference between the analytical and numerical solutions is apparent near the

acoustic peak in the response. The numerical solution for acoustic pressure sensitivity

shows a sensitivity to lamination angle near this peak, while the analytical solution

does not.

solution.

This is attributable to the different assumptions that were made for each

In the analytical solution, only one structural mode couples to each acoustic

For structural mode shapes, the first number indicates the order of the axial component of the mode and the second number

indicates the order of the circumferential component of the mode. For fluid mode shapes, the first number corresponds to the
radial order of the mode, the second to the circumferential order, and the third number indicates the axial order of the mode.
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modeasthe fluid andstructuralmodesareassumedto beorthogonal.This assumptionis

enforcedevenfor thegenerallyorthotropicmaterial.Theinfluenceof thestructuralmode

associatedwith thefluid resonancenear41Hz is very slight. Thus,thesensitivityof that

responseto laminationanglewill likewise be very small. In the numericalsolution for

thegenerallyorthotropicmaterial,thefluid andstructuremodesareno longerorthogonal

and the modal amplitudesof a numberof structuralmodes,rather thana singlemode,

canbe quite substantialfor the acousticpeaksof the response.Thus,the sensitivity of

acousticpressureto laminationanglewill likewise be larger in the numericalsolution.

This differencepointsout someof the limitationsof theanalyticalsolutionusedfor this

analysis.In general,thereis a good correlation between the analytical solutions and the

numerical solutions calculated using MSC/NASTRAN. In particular, the calculation of

sensitivity of acoustic pressure to lamination angle appears valid and can be used for the

optimization of the Starship fuselage.
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Chapter 4 The Beech Starship

The primary aim of this work is the demonstration of the feasibility of reducing the

noise levels in the interior of an actual aircraft fuselage through the optimization of the

lamination angles in the aircraft fuselage. The Beech Starship is the aircraft used for

this study. The Starship fuselage and passenger cabin interior is modeled and analyzed

using the finite element method. Because this work is concerned with the acoustics of

the fuselage interior, no attempt was made to model the wings of the aircraft.

In this chapter, the optimization problem for the fuselage is formulated to reduce the

acoustic pressure at a number of response points in the cabin interior and over a range

of excitation frequencies. The objective function is minimized with the constraint that it

be greater than the acoustic pressure at the response locations. The fuselage lamination

angles are used as the optimization design variables.

Point forces are applied to the fuselage at the wing mounting locations. These forces

represent the structure-bome noise in the aircraft produced by the engines and they are

the noise source for the optimization problem.

It was desired to use the modal frequency response solution for the present work

because a substantial time savings is typically associated with the use of this method

over the use of the direct method. A preliminary modal frequency analysis is performed

on the model and, to ascertain the extent of the modal truncation error associated with

this model, a direct frequency response analysis is performed over the range of the

optimization frequencies.

The results of the optimization of lamination angle for the reduction of interior noise

are next discussed. The design cycle histories for the objective function and design

variables are charted. A modal frequency analysis using the final lamination angles
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calculatedby the optimization algorithm is used to measurethe decreasein interior

soundpressurelevel.

4.1: The Finite Element Model of the Starship

The Beech Starship is an eight- to ten-passenger twin turboprop aircraft designed

and developed in the early 1980's by the Beech aircraft company [30]. It is a unique

aircraft in many respects. The main wing is located on the aft section of the aircraft,

with two smaller canards in front. These canards pivot automatically with the main wing

flaps to maintain pitch and trim [30]. The two engines are mounted on the main wing

in a "pusher" configuration. Lastly, much of the aircraft structure is constructed from

composite materials.

Using data provided by the Raytheon Aircraft Company, the NASA Langley Re-

search Center developed a geometric representation of the Starship. Included in this

representation were the passenger cabin windows, the cockpit windows, passenger cabin

door, and the aircraft emergency escape hatch. Because the present work concerned the

acoustics of the aircraft cabin no attempt was made to model the wings of the Starship.

An isometric view of the geometric model of the Starship is shown in Figure B 13. The

Cartesian coordinate system used for the analysis of the Starship is also shown in this

figure for reference. More detail regarding this system and the location of the origin for

the problem is contained in Appendix C.

This geometric model was used for the generation of both the structural and fluid

finite element meshes. Like the geometric model, the finite element models for this study

were constructed by the NASA Langley Research Center. The structure of the fuselage

was modeled using several different element types. Most of the aircraft, including the

fuselage and windows, was modeled with quadratic quadrilateral elements. The nose
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of the aircraft wasmodeledwith quadratictrilateral elements. Stringersand stiffeners

presentin the Starshipwere modeledusing beam elements. Thesebeamswere used

primarily as reinforcementaround the windows and doorsof the aircraft. A total of

10,620nodes,eachhaving five degreesof freedom,were usedto model the Starship

structure. An isometricview of the structural finite elementmesh is shownin Figure

B14. Figure B15 showsthe locationof the beamelementsin themodel.

The final aspectof the Starshipwhich wasmodeledwasthe air inside thepassenger

cabin. This was the only region of the aircraft wherethe fluid was modeled. Similar

fluid modelswerenot createdfor the cockpit or baggagesectionsof the aircraft. The

air within thepassengersectionwasmodeledusing lineartetrahedralelementsand6887

nodes.Eachof the fluid nodeshadone degreeof freedom.Linear elementswere used

in the fluid to ensurepropercouplingto the structureat the fluid-structureinterfacesof

the model. An isometricview of the fluid portion of the Starshipmodel is shownin

FigureB 16. In the completemodel,the aircraft structuralfinite elementmeshenclosed

the finite elementmeshof the fluid. On the surfaceswherethetwo were in contact,the

fluid nodeswereeachmatchedto a structuralnode.No structuraldetailsof thepassenger

cabininterior weremodeled.Therefore,this sectionof themodeldid not include interior

trim panelsor a floor.

Most of the fuselageis constructedfrom a singlesectionof sandwichcomposite

material. The middle layer of this compositeis a 0.75"-thick honeycombcore. Four

graphiteepoxy face sheets,eachbetween0.0085"- and 0.010"-thick aresymmetrically

appliedto either sideof thecore [31]. Propertiesconsistentwith thoseof aircraft glass

were assignedto the windows of the aircraft. The beamsin the model were given the

materialpropertiesof aluminum.FigureB17 showsthe locationof the variousproperty

sectionsin the model.
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It was assumedthat the structure-bornenoiseproducedby the engineswould enter

the aircraft through the wing mountingpoints on the fuselage. Therefore,this noise

sourcewas modeledwith a total of sixteenpoint forcesappliedto the eight locations

wherethewingswouldattachto thefuselage,asshownin FigureB18. Two wing mounts

are locatedon eachsideof thefuselage.Two moremountingpoints arelocatedon each

of thebulkheadsbelow thebaggagecompartment.All theforcesappliedto thefuselage

were steady-state,harmonic,and in-phase.

A structural damping coefficient of 3% of critical was applied to the composite

structuresin theproblem.Thisvalueis typical for compositematerials[32]. The window

structuresin the aircraftwere given a dampingvalueof 5% of critical in an attemptto

reducetheinfluenceof thosemodeson theoverallacousticsolution.Thoughstructuresin

the passengercabin interior suchastrim panels,seats,andpassengerswerenot modeled

directly, it wasfelt that someaccountingshouldbe madefor the effectof thesefeatures

on the acousticbehaviorof the cabin. Therefore,the fluid elementsin the model were

assigneda dampingvalueof 3% of critical to accountfor the noiseattenuatingeffects

of the aforementioneditems.

4.2: Formulation of the Optimization Problem for the Starship

To reduce the acoustic pressure at a number of points inside the Starship fuselage, the

objective function was minimized with the constraint that it be larger than the maximum

sound pressure level for all the response points in the aircraft and for all excitation

frequencies within the range of optimization.

For the optimization problem, a total of ten fluid grid points were used as acoustic

pressure response locations. These points were chosen to represent the approximate

listening locations of the passengers in the cabin. The acoustic pressure at each of these
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points wasusedasaconstraintin the optimizationproblem.The objectivefunction was

minimized at 25 frequenciesequallyspacedover therangeof 185Hz to 210Hz. Thus,

therewere a total of 250 constraintsfor the optimizationproblem.

As wasdonefor thecylindersensitivityanalysisin Chapter3, the laminationangles

in the fuselagecompositematerialwere usedasthe designvariablesfor the problem.

Unlike the cylinder,which consistedof a single-layercompositeand thereforeonly had

one lamination angle,a total of eight laminationangledesignvariableswere available

for the Starshipfuselage.The laminationangleswereoptimized for thefuselageasone

large section.As discussedabove,this arrangementreflectedthe actualconstructionof

the aircraft. Not includedin this optimizationwere the windows, the passengercabin

door, and the bulkheadat the aft end of the passengercabin.

Theobjectivefunctionwasminimizedoverarangeof frequencies,ratherthana single

frequency,in recognitionof the fact that in a typical aircraftenvironmentthe structural

modescan"shift" in frequencydueto changesin pressureandtemperature.Specification

of a singleoptimizationexcitationfrequencywould be of limited application. Thus,to

accommodatethesefactors, the effect of laminationangle over a range of excitation

frequencieswas considered.

4.3: Dynamic Analysis and Optimization of the Starship

To determine the modal truncation error in the frequency range of interest for the

optimization problem, a direct frequency response was run on the same model for an

excitation range of 185 to 210 Hz. The fuselage was analyzed over a wide frequency

range using the modal forced frequency response method. Damping of 1% of critical was

applied to the structure. No damping was applied to the fluid. A total of 500 structural

and 200 fluid modes were used to model the behavior of the Starship fuselage and interior
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over an excitationfrequencyrangeof 50 to 250 Hz. The 500 structuralmodescovered

a rangeof excitationfrequenciesfrom 0.0 to 650.4Hz andthe 200 fluid modescovered

a frequencyrangefrom 36.23 to 480.94Hz.

A comparisonof theseanalysesfor two structuralandtwo fluid locationsin themodel

areshownin FiguresB19, B20, B21 and B22. From thesefigures, thereis very good

agreementbetweenthenumericaldirectandmodalsolutionsover thefrequencyrangeof

interestfor this study. Thus,it wasfelt that themodalsolutionmethodcouldbe usedfor

the analysisand optimizationof the fuselage. It wasassumedthat theseresults,which

were attainedfor a structuraldampingof 1%of critical, wouldalsobe valid for the 3%

dampingwhich wasappliedto the fuselagefor the optimizationanalysis.

The lamination anglesin the Starship model were next optimized to reducethe

interior soundpressurelevels. A total of elevendesigniterationswere allowedfor the

optimization algorithm. Figure B23 showsthe designcycle history for the objective

function for theseeleveniterations. Figure B24 displaysthe sameinformation for the

laminationanglesin the model. Here,anglesone throughfour representthe anglesfor

thefacesheetson theoutersurfaceof thefuselage,while anglesfive througheight arethe

laminationanglesfor the graphiteepoxy facesheetson theinnersurfaceof the fuselage.

The actualdesignvariablehistoryfor the objectivefunctionfrom the datadeckis shown

below. Completenumericaldatafor all the designvariablesof the problem areshown

in Table 1.
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(HARD CONVERGENCE ACHIEVED)

NUMBER OF FINITE ELEMENT ANALYSES COMPLETED 12

NUMBER OF OPTIMIZATIONS W.R.T. APPROXIMATE MODELS Ii

OBJECTIVE AND MAXIMUM CONSTRAINT HISTORY

.................................................................................................

OBJECTIVE FROM OBJECTIVE FROM FRACTIONAL ERROR MAXIMUM VALUE

CYCLE APPROXIMATE EXACT OF OF

NUMBER OPTIMIZATION ANALYSIS APPROXIMATION CONSTRAINT

INITIAL

1 1.013803E+02

2 1.001399E+02

3 9.959965E+01

4 9.902927E+01

5 9.873276E+01

6 9.869451E+01

7 9.844659E+01

8 9.706750E+01

9 9.831521E+01

i0 9.738248E+01

Ii 9.730855E+01

1.000000E+02

1.013803E+02

1.001399E+02

9 959965E+01

9 902927E+01

9 873276E+01

9 869451E+01

9 844659E+01

9 706750E+01

9 831521E+01

9 738248E+01

9.730855E+01

0.000000E+00

0.000000E+00

0.000000E+00

0.000000E+00

0.000000E+00

0.000000E+00

0.000000E+00

0.000000E+00

0.000000E+00

0.000000E+00

0.000000E+00

2.135050E-02

-8.522272E-03

5.675554E-04

8.283854E-04

3.115296E-03

1.069272E-02

5.217791E-03

8.577228E-03

2.523625E-02

-2.052307E-03

1.018381E-02

4.118681E-03

Cycle Obj. Angle 1

0 I00.00 63.00

1 101.38 59.56

2 100.14 52.74

3 99.60 45.66

4 99.03 41.23

5 98.73 40.70

6 98.69 39.68

7 98.45 39.18

8 97.07 38.61

9 98.32 38.15

10 97.38 39.10

11 97.31 38.93

Angle 2

108.0

86.82

94.59

113.50

114.45

137.37

118.42

134.95

108.15

118.95

130.85

123.31

Angle 3

18.00

21.60

25.94

31.19

37.43

36.94

29.54

32.28

34.32

30.89

33.98

37.38

Angle 4

108.00

86.36

92.78

111.34

126.82

124.94

107.71

129.56

143.55

132.42

120.35

126.05

Angle 5

108.00

86.40

84.21

87.16

104.59

83.67

66.94

61.36

49.09

45.62

50.21

46.23

Angle 6

18.00

21.60

25.92

31.12

37.38

30.91

37.09

32.52

39.03

37.15

40.87

41.40

Angle 7

108.00

86A0

83.39

66.71

53.36

42.69

47.46

37.97

45.56

42.78

47.06

44.49

Angle 8

63.00

57.01

45.61

40.90

37.85

34.83

27.85

26.65

26.82

26.43

25.34

25.53

Table 1 Summary of the design cycle history of each design variable used in the optimization problem.
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The data output listing provides several indicators of the validity of the optimization

run. First, the fractional error of approximation is the difference between the values

of the objective function calculated from the approximate model and the finite element

analysis for each design cycle. A large fractional error would indicate that the move

limits for the problem were too large and that smaller limits should be used. The error

for each iteration of the present analysis was zero. Therefore, the move limits which

were used were not too large.

The data output also indicates the maximum value of the constraints for each design

cycle. From comparison to Equation (13), it would be expected that this value be negative

for this optimization. However, because trying to achieve exactly zero in a computer

application is not meaningful, constraints are not considered violated unless they are

larger than some small positive number. Thus, not all the values listed in the data output

necessarily represent violated constraints.

Not shown in the data output above, but contained in the data file, is the ending density

of the design sensitivity matrix. The design sensitivity matrix is a table listing the design

sensitivities for each of the responses of the problem as calculated with MSC/NASTRAN.

The density indicates the percentage of nonzero terms appearing in the matrix. The

ending density of this matrix for the present optimization was 91.93%. That is, 91.93%

of the design responses were showing a sensitivity to changes in the design variables. A

small density value would be an indicator that very few design responses were changing

with changes in the design variables and that the problem may be poorly or incorrectly

specified. The value for this run was quite large and indicated that nonzero sensitivities

were being calculated in the optimization.

The optimization algorithm achieved hard convergence when the maximum number

of design iterations allowed for the problem (eleven) was reached. The objective function
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moved from a startingvalueof 100 dB to a final valueof 97.31 dB. However, initial

analysisof the cabin interior indicatedthat the maximumacousticpressurein the cabin

at thestartof theoptimizationprocesswas101.31dB. Thus,the initial objectivefunction

valueof 100dB was in violation of thedesignconstraintsof theproblemandthe value

of the objective increasedon the first iteration. This increasemoved the objectiveand

designvariablesinto ausableandfeasiblesolutionregion.Subsequentdesigncycleseach

reducedthe valueof the objectivefunction with the exceptionof iterationnumbernine.

In Figure B24, it is apparentthat the compositematerial is no longer symmetric

after optimization. From a startinglay up of (63/108/18/1081core1108/181108/63),the

laminationangleshavemovedtowardalay up of (38/123/371126/core/46/41/44125).The

four face sheetson the outer surfaceof the compositeappearto be moving toward a

cross-plyorientation(i.e. 35/125/35/125),while threeof the four inner face sheetsare

moving to a laminationangle of 40 °.

Figure B25 is a comparison of the sound pressure level before and after lamination

angle optimization. Shown is the pressure over the range of optimization frequencies

at the response point located near the rear window in the starboard side of the aircraft.

Each peak in this region of the response corresponds to a fluid resonance. This was the

response location in the passenger cabin having the largest sound pressure peak prior to

optimization. A general decrease in the sound pressure levels at this location is apparent

over the frequency range of optimization. In particular, the highest response peak in the

region has been reduced from 101.31 dB to 97.28 dB, a reduction of 4.03 dB.

The comparison of the acoustic pressure at this same location before and after

optimization is shown for a broad range of excitation frequencies in Figure B26. The

limits of the optimization range are shown in this figure for reference. While the noise

levels have decreased over the range of optimization frequencies, they have increased
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for other frequenciesin the response.In particular,a substantialincreasein the acoustic

pressureresponseis noticeablein the rangefrom 110 Hz to 160Hz. Comparisonsof

the acousticresponsebeforeand after optimizationfor the remainingresponsepoints in

the fluid are provided in Appendix C.

The peak soundpressurelevel in the responseoccursat anexcitationfrequencyOf

203Hz. A fringe plot of thisresponsebeforeoptimizationis shownin FigureB27. Note

that this responseis very similar to a cylindrical mode shapeof (1,2,3). A fringe plot

of the acousticpressureresponseat this samefrequencyafter optimization is shownin

Figure B28. While the shapeof the responsehasnot changesappreciablyfrom before

optimizationto after, the magnitudeof the responsehasbeendecreased.

Similar fringe plots areshownfor the structuralresponseat 203 Hz in FiguresB29

(prior to optimization) and B30 (after optimization). From these figures, a change in the

structural response is evident in the region at the bottom of the fuselage forward of the

rear passenger compartment bulkhead.

To reduce the sound pressure levels in the passenger cabin, the structural modes

are modified such that they no longer couple efficiently with the acoustic modes in the

range of optimization frequencies. The structural modes are modified by changing the

lamination angles of the fuselage sandwich composite material. The fringe plots of the

structural response show that in the areas where the response has changes appreciably,

it appears to be moving to a response shape which will couple less efficiently with the

acoustic response shape at 203 Hz. As structural modes decouple from a particular fluid

mode, they may couple with other fluid modes, thus increasing the response at those

excitation frequencies. Thus, as shown in the figures for this work, the sound pressure

level may actually increase at frequencies outside the range of optimization frequencies.

Recall that for this work, the optimizer did not have control over the lamination
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angles in the windows of the aircraft. It was not possibleto modify the response

characteristicsof theseregions. However, the modesof the windows appearedto be

significant contributorsto the acousticresponsein the passengercabin. In particular,

it wasnoted that the locationsof the windows approximatelycoincidedwith the "anti-

nodes"of thefluid responseat 203 Hz. Thecontributionof thesewindow modescoupled

with the fact that contributioncouldnot bemodifiedwith this optimizationschememay

havepreventeda furtherreductionin the passengercabinsoundpressurelevels.

The acousticpressurelevelsat theresponsepointsin the passengercabinhavebeen

successfullyreducedthroughan optimizationof the laminationanglesin the cabin. As

anticipated,an increasein soundpressurelevelwasnotedin areasof theresponseoutside

the rangeof the optimization frequencies.
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Chapter 5 Conclusions

The Beech Starship was modeled and the lamination angles in the fuselage were

optimized to achieve a reduction in the interior noise levels. Point forces simulating

the structure borne noise produced by the engines were applied to the model. These

forces were the noise source for the problem. Optimization of the lamination angles was

performed over a frequency range of 185 Hz to 210 Hz. Ten response locations in the

fluid were used to define the constraints of the problem. The objective function was

minimized with the constraint that it be equal to the maximum sound pressure level in

the set of response locations. This formulation had the potential to reduce the sound

pressure level at several locations and frequencies in the fuselage cabin.

Prior to optimization of the fuselage, the optimization formulation was applied to a

thin, cylindrical shell. Boundary conditions and point forces were applied to the shell

to facilitate the solution of the shell equations of motion by analytical means. These

analytical solutions were used to validate numerical solutions for the motion of the shell

and for the sensitivity of acoustic pressure to lamination angle. Particular attention

was given to differences between the partially-coupled analytical solution and the fully-

coupled numerical solution.

Results from the analysis of the cylinder showed good correlation between the

analytical and numerical solutions. The importance of the coupling of the fluid to the

motion of the cylinder became apparent in the design sensitivity analysis. The acoustic

peaks in the numerical response should show some sensitivity to changes in lamination

angle. The analytical solution used in this work was partially-coupled, and, as anticipated,

such a sensitivity was not present in the analytical solution.
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The peak acousticresponsein the Starshipwas reducedby 4.03 dB through an

optimization of the lamination anglesof the structure. Similar soundpressurelevel

reductionswere attainedat other locations in the passengercabin. The optimization

run was terminatedafter 11 iterations. The fuselagecompositematerial wasno longer

symmetricafteroptimization.The outerfour facesheetsappearedto bemovingtowarda

cross-plyconfiguration,while threeof thefour inner facesheetsweremovingtoward the

samelaminationangle. Soundpressurelevel increasedat severalexcitationfrequencies

not included in the rangeof frequencyoptimizationrange.

Not all areas of the fuselage structure were included in the optimization. Modes

outside the portion of the structure included in the optimization were still manifested

in the acoustic response after optimization and may have prevented a further reduction

in noise level.

This work has successfully demonstrated the feasibility of reducing aircraft interior

noise over a range of excitation frequencies through optimization of the composite

lamination angles of the aircraft. Significantly, this noise reduction was attained on

an actual aircraft model, rather than a thin, cylindrical shell fuselage model. A reduction

in sound pressure level was also achieved at a number of points in the cabin interior and

over a range of excitation frequencies.

Careful consideration must be given to which areas of the aircraft are to be optimized

and over what frequency range the optimization should take place. Areas of the fuselage

which are not included in the lamination angle optimization may still have an effect upon

the acoustic response after optimization. For frequencies not included in the optimization

range, the acoustic pressure can increase after optimization. Care must be exercised to

ensure that an acoustic response field is not created that passengers would find more

unpleasant than the original acoustic field.
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This work did notconsideranyeffectsthatlaminationangleoptimizationmight have

uponthe structuralintegrity of the aircraft. Clearly, theseeffectscannotbe ignoredby

the aircraft manufacturerandthey would takeprecedenceover the acousticbenefitsof

this analysis.

This work usedpoint sourcesto model the structure-bornenoiseproducedby the

engines. As an extensionof this work, the model could be modified to include other

noisesources.Someof thesesourcesmight bepropellernoiseor boundarylayer noise.

Theeffectsof changingthe mountinglocationsof the enginecouldalsobe investigated.

For example,many small airplanesthe samesize classas the Starship have engines

mountedon the aft portion of the fuselage,ratherthanon the wings. Investigationsof

thesetypeswould beof greatapplicability to theaircraft manufacturingindustry.

34



Chapter 6 Acknowledgments

The first author gratefully acknowledges support from NASA Langley Research

Center and The George Washington University throughout the course of this work.

35



Bibliography

[1] Hashin, Zi, ed. Mechanics of Composite Materials: Recent Advances. Proceedings

of the IUTAM Symposium on Mechanics of Composite Materials, Pergamon Press,

1982.

[2] Jones, Robert M. Mechanics of Composite Materials. Scipta Book Company,

Washington, D. C., 1975.

[3] Koval, L. R. "Sound Transmission into a Laminated Composite Cylindrical Shell."

Journal of Sound and Vibration, Vol. 71, No. 4, 1980.

[4] Silcox, Richard J., Lester, Harold C., and Abler, Steve B. "An Evaluation of Active

Noise Control in a Cylindrical Shell." NASA TM 89090, February 1987.

[5] Salagame, R. R., Belegundu, A. D., and G. H. Koopmann. "Analytical Sensitivity

of Acoustic Power Radiated from Plates." Journal of Vibration and Acoustics, Vol.

117, January 1995.

[6] Lamancusa, J. S. "Numerical Optimization Techniques for Structural-Acoustic Design

of Rectangular Panels." Computers and Structures, Vol. 48, No. 4, 1993.

[7] Naghshineh, Koorosh, Koopmann, Gary H., and Belegundu, Ashok D. "Material

Tailoring of Structures to Achieve a Minimum Radiation Condition." Journal of the

Acoustical Society of America, 92(2), Pt. 1, August 1992.

[8] Engelstad, S. P., Cunefare, K. A., Crane, S., and Powell, E. A. "Optimization

Strategies for Minimum Interior Noise and Weight Using FEM/BEM." Inter-Noise

95 Proceedings, 1995.

[9] Crane, S. P., Cunefare, K. A., Engelstad, S. P. and Powell, E. A. "A Comparison of

Optimization Formulations for Design Minimization of Aircraft Interior Noise." 37th

AIAA Structural Dynamics and Mechanics Conference, AIAA 96-1480, April 1996.

36



[10] Rao,K. P. andGopalkrishna,H. R. "Optimizationof CompositeCylindrical Panels

for Buckling by Ranking." Composite Structures, Vol. 21, No. 3, 1992.

[11] Hu, Hsuan-Teh and Wang, Su Su. "Optimization for Buckling Resistance of Fiber-

Composite Laminate Shells with and without Cutouts." Composite Structures, Vol.

22, No. 1, 1992.

[12] MacNeal, Richard H. NASTRAN Theoretical Manual. The MacNeal-Schwendler

Corporation, 1972.

[13] Marulo, Francesco and Beyer, Todd B. "NASTRAN Application for the Prediction

of Aircraft Interior Noise." Fifteenth NASTRAN Users' Colloquium, NASA CP 2481,

May 1987.

[14] Grosveld, Ferdinand W., Sullivan, Brenda M., and Marulo, Francesco. "Aircraft

Interior Noise Prediction Using a Structural-Acoustic Analogy in NASTRAN Modal

Synthesis." Proceedings of the 6th International Modal Analysis Conference,

Kissimmee, Florida, Volume 2, 1988.

[15] SenGupta, G., Landmann, A. E., Mera, A., and Yantis, T. F. "Prediction of Structure-

Borne Noise, Based on the Finite Element Method." AIAA lOth Aeroacoustics

Conference, AIAA-86-1861, July 1986.

[16] Fernholz, Christian M. and Robinson, Jay H. "Fully-Coupled Fluid/Structure Vibra-

tion Analysis Using MSC/NASTRAN." NASA TM 110215, January 1996.

[17] Reddy, J. N. An Introduction to the Finite Element Method. McGraw-Hill, 2nd ed.,

1993.

[18] Lahey, Robert S., et aI., editors. MSC_ASTRAN Reference Manual, Version 68,

Volume 1. The MacNeal-Schwendler Corporation, 1994.

[19] Blakely, Ken. MSC/NASTRAN Basic Dynamic Analysis, Version 68. The MacNeal-

Schwendler Corporation, 1993.

37



[20] Roozen,N. B. "Numerical Acousto-elasticAnalysis of Aircraft Structuresusing

MSC/NASTRAN". 1993 MSC European User's Conference, 1993.

[21] Fluid-Structure Analysis in MSC/NASTRAN. Seminar notes. The MacNeal Schwendler

Corporation, 1993.

[22] Moore, Gregory J. MSC/NASTRAN Design Sensitivity and Optimization, Version 68.

The MacNeal-Schwendler Corporation, 1994.

[23] Vanderplaats, Garret N. "CONMIN-A FORTRAN Program for Constrained Function

Minimization User's Manual." NASA TM X-62,282, August 1973.

[24] Design Sensitivity and Optimization in MSC/NASTRAN. Seminar notes. The MacNeal

Schwendler Corporation, 1995.

[25] Unruh, J. F. and Dobosz, S. A. "Fuselage Structural-Acoustic Modeling for Structure-

Borne Interior Noise Transmission." Journal of Vibration, Acoustics, Stress, and

Reliability in Design, Vol. 110, April 1988.

[26] Bert, C. W. et aI. "Free Vibrations of Multilayer Anisotropic Cylindrical Shells."

Journal of Composite Materials, Vol. 3, July 1969.

[27] Hu, Hsuan-Teh and Wang, Su Su. "Optimization for Buckling Resistance of Fiber-

Composite Laminate Shells with and without Cutouts." Composite Structures, Vol.

22, No. 1, 1992.

[28] Dong, Stanley B. "Free Vibration of Laminated Orthotropic Cylindrical Shells." The

Journal of the Acoustical Society of America, Vol. 44, No. 6, 1968.

[29] Leissa, Arthur W. Vibration of Shells. USGPO, NASA SP-288, 1973.

[30] Hooper, E. H. "Structural Development of Recent Aircraft -- Starship." 36th

AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and materials Con-

ference, AIAA 95-1469, April 1995.

38



[31] Hooper, E. H. "Starship: A Model for Future Designs." The First Core Conference,

Zurich, October 1988.

[32] Coates, Timothy J. "A Numerical Study of Active Structural Acoustic Control in a

Double Wall Cylinder." Master's thesis, The George Washington University, August

1993.

[33] Lester, Harold C. and Lefebvre, Sylvie. "Piezoelectric Actuator Models for Active

Sound and Vibration Control of Cylinders." Journal of Intelligent Material Systems

and Structures, July 1993.

[34] Kraus, Harry. Thin Elastic Shells. John Wiley & Sons, Inc., 1967.

[35] Press, William H. Numerical Recipes: The Art of Scientific Computing. Cambridge

University Press, first edition, 1990.

[36] Wolfram, Stephen. MathematicarM: A System for doing Mathematics by Computer.

Addison-Wesley Publishing Company, Inc., 1988.

[37] Reymond, Michael and Miller, Mark, Editors. MSC/NASTRAN Quick Reference

Guide, Version 68. The MacNeal-Schwendler Corporation.

39



Appendix A Equations.of Motion for a Thin,
Specially Orthotropic Cylindrical Shell

In this appendix, a solution for the thin cylindrical shell equations of motion for

specially orthotropic materials is developed. The Donnell-Mushtari equations of motion

are summarized. More detailed theories are available. For these theories, the reader is

referred to the literature [29, 34]. A solution for a particular set of boundary conditions

and applied forces is given. This solution was in turn used for work appearing in Chapter

3 of this research. A solution is also developed for the fluid inside the shell.

The Donnell-Mushtari equations of motion for a thin, specially orthotropic single-

layer circular cylinder including damping effects are given by [29, 33]:

where

Lll --

L12 =

L13 -

L21 =

L22 --

L23 -

L31 -

L32 -

La3 -

+

[ 11 131[i]L2x L= 52a] = _--2-K
L31 L32 L33J

02 G(1 - retype) 02 (1 - ve.z,.e) 0 psa2(1 - _'ezyxe) 02

+ Ezz 002 + 7 Ex_h O-t - Ezz Ot 2

_eEee + G(1 - _e_e) 0 2

E_ OsOO
ye_Eee 0

E_ Os

t/_oEee + G(1 - t,ozt'ze) 0 2

E_ OsOO

G(1 - ve_,_e) 0 2 Eoo 0 2
Ezx Os 2 + Ex_ 002 + 7

Eee 0

Exx O0

E_ Os
Eee 0

E_ O0
Eoo h 2 [ 0 4

- E_--7+ _-TJ[_ E_
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Exxh O-t + E_ Ot 2
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(982002
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psa2(1 -- _OxtJzO) 0 2

Ezz cot 2

(A2)
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where

X

s = - (A3)
a

Here, u, v, and w represent the axial, circumferential, and radial displacements of the

middle surface of the shell, h represents the shell thickness, a its radius and 3' is the

structural damping coefficient. On the fight-hand side, f,:, fo, fr represent forces applied

to the cylinder in the longitudinal, circumferential, and radial directions respectively. If

boundary conditions of

v(O,O)=v(O,5=o

w(0,0)= _(0,1)=0

u, v, w(O,x) = u, v, w(O + 2nTr, x) (periodicity)

(A4)

are applied and one assumes a harmonic time dependance, then a general solution for

Equation (A1) can be written

(A5)

where

to 12_

_(O,x,t)= _* Z _ _o_(_=,)[u_ _os(no)+ u;_ _i_(no)]
rrt=0 n=0

(x_ (x)

v(O,x, t) = e i"n E E sin (Ams)[Vm_ sin (nO) + V* n cos (n0)]
ra=l n=0

o¢3

_(0,x,_)= _' Z _ sin(_ms)[Wmncos(n0)+ W_nsin(n0)]
m=l n=0

TtZTr a

m - (A6)
l

The boundary conditions shown in Equation (A4) are commonly referred to as the

boundary conditions for a "shear diaphragm", or "free support" [29]. It should be stressed

that this particular set of boundary conditions was applied so as to make it possible to

write a closed-form solution for Equation (A1). Proceeding with this derivation, if point
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forces of

f_=0

f0=0

+6(0-_)]

(A7)

are applied to the cylinder, the radial force can be expanded in terms of the eigen

functions of the cylinder's radial displacement

OO (x)

f_(O, x, t) = e i_t _ _ sin (Ams)[F_,_ cos (nO) + f *_ sin (nO)]
m=l n=l

(A8)

where

2a (rnTr) [cos (nTr) + 1]Finn = Fo_-_- sin

F_,_ = 0

(A9)

Note that F* n becomes zero for this particular choice of _ Substituting Equations (A5)

and (A8) into Equation (A1) yields, after some rearrangement

[00]a21 a22+_ a23 [Vmn[ - 1p_ha 2
t_ a31 a32 a33-ft [WmnJ F_n

(AIO)

and

-4-_ --a12 a13 ] [U*n

--a_ a_+. --a_ / /V_
a31 --a32 a33 -- _.] kW*mn

11o-- psha 2 0
F_,_

=_ (A11)
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where

all ---- 2rliWWmn -- --

a12 ----

a13 ----

a21 --

a22 ----

a23

a31 _-- ___

C_ Yox Eoo
a32 = --_-n

a Zxx

a33 = 271iWWmn
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Ezx

C2LA uox Eoo
a2 m Exx
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Exx
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and
Sx 2

psa2(1 - t,ox_,zo) w 2 a 2
= £- . =

(A13)

Note that the structural damping coefficient 3' has been replaced by a frequency-dependent

modal damping term r/ where

'7 = 2rlWmn (A14)
a2psh

It can be seen from examination of Equations (A10) and (A11) that it is not necessary

to carry along both sets of terms. Either the starred or unstarred terms can be used as a

complete solution. For the case of eigenvalue analysis, both Equations (A 10) and (A 11)

will yield the same eigenvalues. Furthermore, for the forced frequency response analysis

where the applied forces are as shown in Equation (A7), the right-hand side of Equation

(A11) becomes zero. Thus, the starred coefficients are also zero. This work uses the
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unstarred terms of Equation (A5) as a comPlete solution. That is
o() (x)

u(0,x,t) : c Z Z cos cos(no)
m:O n-----O

v(O, x, t) = e i_* E E Vm_ sin (Ares)sin (nO) (115)
m=l n=0

w(O,x,t) = e i_t E E Wransin(Ams)c°s(nO)
m=l n=O

For the fluid-filled region inside the cylindrical shell, the wave equation in cylindrical

coordinates can be used to describe the acoustic pressure at any point in the fluid. The

wave equation is given by

1 02p
V2p --0 (A 16)

doOt2

where, in cylindrical coordinates,

02 1 0 1 02 02
V2 -

- -ff_r2 + -_-_r+ r2 002 + Ox2 (A17)

Choosing boundary conditions of

p(r,O,O,t) = p(r,O,l,t) =0

Op(a,O,x,t) 02w(O,x,t)

Or = -P] Ot 2

Ip(0,0,_,t)l < o_ (boundedness)

(A18)

p(r,O,x,t) = p(r,O + 2_rn, x,t) (periodicity)

allows one to couple the motion of the fluid to that of the cylinder and still write a

relatively simple closed-form solution for the acoustic pressure in the fluid. It should be

noted that this particular set of boundary conditions is chosen so that a simple closed-

form solution can be developed for validation and comparison to numerical finite element

solutions. This same method was used by SenGupta et al. [15] for the same purpose.

Applying these boundary conditions and using the results for the cylindrical shell yields

the following expression for p

(x) oo

p(r,O,x,t) = e iwt E E Jn(amr) sin(Ams)[Pmn cos(nO) + P*nsin(nO)]
rn=l n=l

(A19)
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whereJn represents the n-th order Bessel function of the first kind and, written in closed-

form,
Cmnpfw 2

_n=0

(A20)

and

w 2 m27r 2
2 (A21)

aM- co2 t2

As was the case for the structure, note that for the forces applied to the cylinder as shown

in Equation (A7), the starred terms in Equation (A19) become zero. This work will take

o( OO

p(r,O,z,t) = e iwt E E PmnJn(a_r) sin(Ams)cos(nO) (A22)
m=l n=l

45



Appendix B Figures
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Figure B1 MSC/NASTRAN design cycle flow chart [24].
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Figure B2 Schematic representation of objective function and acoustic response. As the

objective function is minimized, the sound pressure level is likewise reduced.
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Figure B3 Exploded view of the fluid-structure problem for the thin, cylindrical shell

filled with air. The forces applied to the model for this analysis are also shown.
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Figure B4 Finite element fluid-structure model for the thin, cylindrical shell filled with air.
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Figure B5 Radial displacement of a thin, cylindrical shell over a range of excitation frequencies. Displacement is

calculated at the point r = a, 8 = 0, x = _. Analytical and numerical modal solutions shown.
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Figure B6 Sound pressure level within the thin, cylindrical shell over a range of excitation frequencies. Pressure is

calculated at the fluid point at r = _, 0 = 0, x = 5" Analytical and numerical modal solutions shown.

9

E
8

10 "8

10 "4

It i

I', ,

; J

II i I
t i i
I I I
t ii

i Ii
i i
i i

II., r I r , _ , I

50 100

w Analytic

w Numeric

i i i t I

150

Frequency (Hz)

Figure B7 Radial displacement of a thin, cylindrical shell over a range of excitation frequencies.

Displacement is calculated at the point r = a, a = 0, x = _. Analytical and numerical

direct solutions shown. The numerical solution is for the ranges of 20 to 60 Hz and 90 to 110 Hz.
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Figure B8 Sound pressure level in a thin, cylindrical shell over a range of excitation frequencies.

z Analytical and numericalDisplacement is calculated at the point r = _, a = 0, z = _-.

direct solutions shown. The numerical solution is for the ranges of 20 to 60 Hz and 90 to 110 Hz.
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Figure B9 Global and local material axes for a single-ply laminate. The lamination angle _b

is measured counter clockwise from the global x-axis to the local material 1-axis [27].
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z

Figure B14 Isometric view of the finite element mesh of the Starship fuselage. The fluid portion

of the model is not visible, as it is completely enclosed by the structural elements of the model.

z

,,fvk \ _',,,'_'
_- _k "_\\A)

Figure B15 Isometric view of the beam elements in the Starship finite element model.
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z

Figure B16 Isometric view of the finite element mesh of the fluid inside the Starship cabin. In the
complete model of the Starship, these elements are completely enclosed by structural elements.

Figure B17 Isometric view of the Starship structure showing the location of the different materials used in the model.
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z

Figure B18 View of the Starship fuselage showing forces applied for this study. Shown are
the forces on the wing mounts and the forward bulkhead below the baggage compartment.
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Figure B19 Forced frequency response for the Starship finite element model. Structural displacement magnitude at
the point x=253.63, y=-34.71, z=99.93 (see Appendix C for an explanation of the Starship coordinate system).
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Figure B25 Sound pressure level verses excitation frequency before and after lamination angle optimization. Shown
is the optimization frequency range for the response location at the rear window on the starboard side of the aircraft.
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Figure B26 Sound pressure level versus excitation frequency before and after lamination

angle optimization. Shown is the full excitation frequency range and the limits of the optimization

range for the response location at the rear window on the starboard side of the aircraft.
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Figure B27 Acoustic pressure response in the passenger cabin at an

excitation frequency of 203 Hz prior to lamination angle optimization.
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Figure B29 Structural displacement magnitudes at an excitation
frequency of 203 Hz prior to lamination angle optimization.
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frequency of 203 Hz after lamination angle optimization.

61



Appendix C Sound Pressure Level at All
Response Points for the Optimization Problem

This appendix presents the acoustic pressure response before and after optimization

of the lamination angles at all ten response locations used for the optimization. Also

included is a brief explanation of the coordinate system used for the model and a table

of the (x,y,z) locations of the response points.

A Cartesian coordinate system was used to describe the locations of the nodes in

the finite element model. The x-axis was aligned with the longitudinal (roll) axis of the

aircraft and the z-axis was aligned with the vertical (yaw) axis of the Starship. The nose

of the aircraft was located at the point (0,0,72). Additional points of reference in the

model are listed in Table C1.

Flight Station
Reference Point (x-location, in.)

Nose of aircraft 0

Front of passenger cabin 170

Forward wing mounting brackets 237

Aft wing mounting brackets 324

Rear of passenger cabin 357

Forward bulkhead below baggage compartment 357

Aft bulkhead below baggage compartment 416

Tail of aircraft 537

Table C1 Table listing the flight stations (x-axis locations) of a number of geometrically
significant points in the Starship finite element model. Stations are listed in inches.

A total of ten fluid nodes were used as response locations for the optimization

problem. These grids were chosen to represent the approximate listening locations of
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the passengers within the cabin. Table C2 provides a listing of the (x,y,z) locations for

each of these nodes.

Node Description x-coordinate y-coordinate z-coordinate

First window, port side 220.3 -15.6 122.3

First window, starboard side 221.50 15.2 125.6

Second window, port side 249.7 -12.4 123.3

Second window, starboard side 250.5 14.9 125.14

Third window, port side 282.8 -22.6 124.9

Third window, starboard side 279.1 16.8 120.8

Fourth window, port side 310.1 - 19.8 122.5

Fourth window, starboard side 312.5 13.22 124.7

Fifth window, port side 337.3 -15.5 122.9

Fifth window, starboard side 339.6 19.9 119.7

Table C2 Table of response node locations in the model. Locations are in inches.

Figures C1 through C10 show the acoustic pressure response verses excitation

frequency for each of the nodes in Table C2. The responses before and after optimization

and the frequency range of optimization are also shown.
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Appendix D Computer Codes

This appendix contains a source code listing of the FORTRAN and Mathematica 4

programs written in support of this work. Also included in this Appendix is a portion

of the MSC/NASTRAN bulk data file showing the structure of the optimization used

for the present work. The codes listed in this Appendix have been written specifically

for this study and should be considered to be research code only. They are provided

for completeness. Their successful operation cannot be guaranteed outside the scope of

the present work.

D.I: FORTRAN Program compfreq.f

This is a program written in the FORTRAN language and it was used in the present

work to calculate the forced frequency response of the fluid/structure cylinder in Chapter

3. This code makes calls to Bessel function algorithms. These algorithms can be found

in the literature [35]. The structure is assumed to be specially orthotropic and the fluid

is ideal. Material properties for the structure are read from the file "layers.dat". The

Donnell-Mushtari theory is used to describe the motion of the cylinder. The cylinder

displacements are coupled to the fluid in the cylinder. However, the fluid backpressure

is not coupled to the structure.

As outlined in Appendix A, the boundary conditions applied to the structure are those

for a simple support. Boundary conditions of p=0 are applied to the fluid endcaps of the

system. The natural vibration frequencies for the structure can be output to a separate file.

4 Mathematica is a registered trademark of Wolfram Research, Inc.
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program compfreq

c

c Program to calculate the nautral frequencies of free vibration

c for a laminated orthotropic cylindrical shell and the forced

c frequency response. The shell contains an ideal fluid (air) and the

c acoustic response of this fluid to the vibration of the shell is

c determined. Bounday conditions are those of simple support,

c with no constraints in the axial direction.

c

c Input files include layers.dat, a file which contains data about

c the number of lamina in the shell and the material properties for

c each.

c

c Output files include:

c freq.out, a file which contains the mode numbers and natural

c frequencies of the cylinder.

c disp.out, contains displacement information at a point on the shell

c and acoustic pressure information at a point in the fluid.

c

c Declarations

c

implicit real(a-h,o-y)

implicit complex(z)

real l,lam,nul2,nu21,hh, kk

c

character*15 infile

c

parameter (pi=3.141592654,maxf=150,moden=40,modem=40)

c

dimension C(4,3,3),A(3,3),DS(3,3),D(3,3),h(4,2),

& u (maxf) ,v (maxf) ,w (maxf) ,p (maxf) , frequency (maxf)

c

logical print

c

c Begin program

c

zi=cmplx (0.0, i. 0)

c

c Specify geometry of the shell

c

1=164.0

r=35.0

rzero=0.0

small=10.0E-25

c

c Density of the fluid (air) (slugs/in**3)

rhof=l.17e-7

c Acoustic speed of sound (in/sec)

co=13620.0

c Structural damping

eta=0.0

c Applied force (ibs.)

Fo=0.3

c Acoustic reference pressure (psi)

pref=2.9e-9

c

c Specify location of interest (tt in radians)

c

rr=34.99991502

tt=l.1781

yz=(23.4285)/r

c

c Frequency increment (Hz)

step=l.0

c Starting frequency

freq=l.0*(2.0*pi)

c Print natural frequencies once

print=.FALSE.

c Input file

infile="layers.dat"

c
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do 50 i=1,3

do 55 j=l,3

A(i,j)=0.0

D(i,j)=0.0

DS(i,j)=0.0

55 continue

50 continue

c

c Get material properties from layers.dat file

c

open(unit=10,file=infile,status='old')

c

read(10,1000)layers

c

do i00 k=l,layers

read(10,*)Ell,E22,nu12,nu21,G

write(*,*)Ell,E22,nu12,nu21,G

read(10,*)hh,rhos

write(*,*)hh, rhos

i00 continue

c

close(10)

pause

c

c Prepare tecplot natural frequencies output file

if (print) then

open(unit=20,file='freq.out',status='unknown')

write(20,1005)'TITLE = "Variation of Frequency with m"'

write(20,1005)'VARIABLES = "m","n","'w_l","'w_2","'w_3"'

endif

c

c Prepare tecplot displacement output file

open(unit=30,file='disp.out',status='unknown')

write(30,1005)'TITLE="Forced Fluid/Structure Cylinder Resp."'

write(30,1005)'VARIABLES="Freq","u","v","w","p"'

write(30,1005)'ZONE T="Analytic"'

c

do 305 k=l,maxf

c

zu=cmplx(0.0,0.0)

zv=cmplx(0.0,0.0)

zw=cmplx(0.0,0.0)

zp=cmplx(0.0,0.0)

c

do 300 n=0,moden

c

if (print) write(20,1010)'ZONE T="n=',n,'"'

c

do 350 m=l,modem

c

lam=(m*pi*r)/l

kk=hh*hh/(12.0*r*r)

c

c Calculate alpha's

c

pll=(-lam*lam-n*n*(G*(l.0-nul2*nu21)/Ell))

p12=lam*n*((nu12*E22+G*(l.0-nu12*nu21))/Ell)

p13=lam*nu12*E22/Ell

p21=lam*n*((nu12*E22+G*(l.0-nu12*nu21))/Ell)

p22=-lam*lam*(G*(l.0-nu12*nu21)/Ell)-n*n*E22/Ell

p23=-n*E22/Ell

p31=-lam*nu12*E22/Ell

p32=n*E22/Ell

p33=E22/Ell+kk*(lam*lam*lam*lam+2.0*n*n*lam*lam*

& ((nu12*E22+2.0*G*(l.O-nu12*nu21))/Ell)+(E22/Ell)*

& n*n*n*n)

c

c Define cubic equation constants

c

CI= (pll+p22-p33)

C2= (pll*p22-pll*p33-p22*p33+p23*p32-p12*p21+p13*p31)
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C3= (pll*(p23*p32-p22*p33)+p12*(p21*p33-p23*p31)+

& p13*(p31*p22-p21*p32))

c

c Solve equation for omega squared.

c

cc=(I.0/3.0)*(3.0"C2-Ci*Ci)

dd=(i.0/27.0)*(2.0"Ci*Ci*Ci-9.0"Ci*C2+27.0"C3)

c

delta=(dd*dd/4.0)+(cc*cc*cc/27.0)

c

if (delta.LT°0.0) then

partone=-dd/2.0

parttwo=SQRT(-l.0*delta)

zPP=cmplx(partone,parttwo)

zQQ=cmplx(partone,-parttwo)

else

partone=-dd/2.0

parttwo=SQRT(delta)

zPP=cmplx((partone+parttwo),rzero)

zQQ=cmplx((partone-parttwo),rzero)

endif

c

zPP=zPP**(I.0/3.0)

zQQ=zQQ**(I.0/3.0)

c

zfirst=-0.5*(zPP+zQQ)

zsecnd=-0.5*(zPP-zQQ)*SQRT(3.0)*zi

c

partone=real(zfirst)+real(zsecnd)

parttwo=imag(zfirst)+imag(zsecnd)

parttre=real(zfirst)-real(zsecnd)

partfor=imag(zfirst)-imag(zsecnd)

c

zrootl=zPP+zQQ-Cl/3.0

zroot2=cmplx((partone-Cl/3.0),parttwo)

zroot3=cmplx((parttre-Cl/3.0),partfor)

c

zfreql=SQRT(zrootl*Ell/(rhos*r*r*(l-nul2*nu21)))

zfreq2=SQRT(zroot2*Ell/(rhos*r*r*(l-nul2*nu21)))

zfreq3=SQRT(zroot3*Ell/(rhos*r*r*(l-nul2*nu21)))

c

if (imag(zfreql).NE.0.0.OR.

& imag(zfreq2).NE.0.0.OR.

& imag(zfreq3).NE.0.0) then

write(*,1005)'Warning: Non-zero imaginary frequency'

endif

c

if (print) then

write(20,1015)m,n, real(zfreql/(2.0*pi)),

& real(zfreq2/(2.0*pi)),

& real(zfreq3/(2.0*pi))

if (n. EQ.moden) then

close(20)

print=.FALSE.

endif

endif

c

c Output for non-dimensional parameters

c

c if (print) then

c x=lam/pi

c zoutl=SQRT(zrootl)

c zout2=SQRT(zroot2)

c zout3=SQRT(zroot3)

c write(20,1020)x,n,real(zoutl),

c & real(zout2),

c & real(zout3)

c if (n. EQ.modes) close(20)

c endif

c

call magnitude(zfreql,freql)
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call magnitude(zfreq2,freq2)

call magnitude(zfreq3,freq3)

Cls=Ell/(rhos*(l.0-nul2*nu21))

Calculate force coefficient

Fmn=r*(2.0/(pi*l))*Fo*sin(m*pi/2.0)*(l.0+cos(n*pi))

rootA=-SQRT(-(Cls/(r*r))*(lam*lam*G*(nul2*nu21-1.0)+

& n*n*(E22-Ell+G*(l.0/nu12-nu21)))/Ell)

rootB=-SQRT(-(Cls/(r*r))*(lam*lam*(nu12*nu12*E22-Ell+

& nul2*G*(l.0-nul2*nu21))+n*n*G*(nul2*nu21-1.0))/

& Ell)

beta =(Cls/

gamma=(Cls/

xi =(Cls/

(r*r))*(lam*lam+n*n*G*(l.O-nul2*nu21)/Ell)

(r*r))*(lam*lam*G*(l.0-nu12*nu21)/Ell+n*n*E22/Ell)

(r*r))*(lam*n*nu12*E22+G*(l.0-nu12*nu21))/Ell

discr=SQRT((beta+gamma)*(beta+gamma)+4.0*(xi*xi-beta*gamma))

omegaC=0.5*((beta+gamma)+discr)

omegaD=0.5*((beta+gamma)-discr)

rootC=SQRT(omegaC)

rootD=SQRT(omegaD)

zdet=cmplx((freq*freq-freq3*freq3),2.0*eta*freq*freq3)*

& cmplx((freq*freq-freq2*freq2),2.0*eta*freq*freq2)*

& cmplx((freq*freq-freql*freql),2.0*eta*freq*freql)

zcofA=cmplx((freq*freq-rootA*rootA),2.0*eta*freq*rootA)

zcofB=cmplx((freq*freq-rootB*rootB),2.0*eta*freq*rootB)

zcofC=cmplx((freq*freq-rootC*rootC),2.0*eta*freq*rootC)*

cmplx((freq*freq-rootD*rootD),2.0*eta*freq*rootD)

zAmn=-(Fmn/(rhos*hh))*zcofA/zdet*l.0/(r*r)

zBmn= (Fmn/(rhos*hh))*zcofB/zdet*l.0/(r*r)

zCmn=-(Fmn/(rhos*hh))*zcofC/zdet*l.O/(r*r)

Sum displacements

zu=zu+zAmn*cos(lem*yz)*cos(n*tt)

zv=zv+zBmn*sin(lam*yz)*sin(n*tt)

zw=zw+zCmn*sin(lem*yz)*cos(n*tt)

Solve for pressure coefficient

alphasqr=(freq*freq)/(co*co)-lam*lam/(r*r)

if (alphasqr.LT.0.0) then

alph=SQRT(-l.0*alphasqr)

call cofimag(small,r,alph, n,bottom)

zDmn=(zCmn*rhof*freq*freq)/bottom

call bessimag(small,rr,alph,n,press)

elseif (alphasqr.GT.0.0) then

alph=SQRT(alphasqr)

call realcof(small,r,alph, n,bottom)

zDmn=(zCmn*rhof*freq*freq)/bottom

call bessreal(small,rr,alph,n,press)

elseif (alphasqr.EQ.0.0) then

write(*,*)'Alpha = 0.0'

endif

c Sum pressure

c

zp=zp+zDmn*press*sin(lam*yz)*cos(n*tt)

c

350 continue
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300 continue

c

c Dummy print

write(*,*)'Complex pressure = ',zp

write(*,l)'Complex data calculated for ",k

c

c Convert complex displacements, pressure to magnitudes

c

call magnitude(zu,u(k))

call magnitude(zv,v(k))

call magnitude(zw,w(k))

c

c Convert pressure to dB scale

call magnitude(zp,p(k))

p(k)=20.0*(0.4342944819*log(p(k)/pref))

c

c Write to tecplot file

c

frequency(k)=freq/(2.0*pi)

write(30,1025)frequency(k),10.0E-10,v(k),w(k),p(k)

c

c Increment frequency

freq=freq+step*(2.0*pi)

c

305 continue

c

close(30)

c

1 format(a28,i4)

i000 format(i2)

1005 format(a)

I010 format(al0,i2,al)

1015 format(i3,1x,i3,3(ix, fl2.2))

1020 format(fl2.6,1x,i3,3(ix, fl2.6))

1025 format(f7.2,4(ix,el6.9))

c

stop

end

c

c **********************************************************************

subroutine magnitude(z,x)

c

c Subroutine to return the magnitude x of a complex argument z

c

implicit real(a-h,o-y)

implicit complex(z)

c

partone=real(z)

parttwo=imag(z)

c

x=SQRT(partone*partone+parttwo*parttwo)

c

return

end

c

c **********************************************************************

subroutine realcof(tiny,a,alph,n,out)

c

c Subroutine to return the denominator of the pressure coefficient term.

c Used when the argument of the n-th order bessel function is real.

c

implicit real(a-h,o-y)

implicit complex(z)

c

zi=cmplx(0.0,1.0)

c

x=alph*a

c

if (n. EQ.0) then

terml=BESSJ0(x)

term2=BESSJl(x)
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elseif (n.EQ.I) then

terml=BESSJl(x)

term2=BESSJ(2,x)

else

terml=BESSJ(n,x)

term2=BESSJ((n+l),x)

endif

out=(n/a)*terml-alph*term2

if (ABS(out).LT.tiny) then

if (out.LT.0.0) then

out=-l.0*tiny

else

out=tiny

endif

endif

return

end

**********************************************************************

subroutine cofimag(tiny, a,alpha,n,out)

Subroutine to return the denominator of the pressure coefficient term.

Used when the argument of the n-th order Bessel function is complex.

implicit real (a-h,o-y)

implicit complex(z)

x=alpha*a

if (n.EQ.0) then

terml=BESSI0(x)

term2=BESSIl(x)

elseif (n.EQ.I) then

terml=BESSIl(x)

term2=BESSI(2,x)

else

terml=BESSI(n,x)

term2=BESSI((n+l),x)

endif

out=alpha*term2+(n/a)*terml

if (ABS(out).LT.tiny) then

if (out.LT.0.0) then

out=-l.0*tiny

else

out=tiny

endif

endif

return

end

**********************************************************************

subroutine bessreal(tiny,r,alpha,n,out)

Subroutine to return the n-th order bessel function of a real argument.

implicit real (a-h,o-y)

implicit complex (z)

x=r*alpha

if (n.EQ.0) then

out=BESSJ0(x)

elseif (n. EQ.I) then

out=BESSJl(x)

else
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out=BESSJ(n,x)

endif

if (ABS(out).LT.tiny) then

if (out.LT.0.0) then

out=-l.0*tiny

else

out=tiny

endif

endif

return

end

**********************************************************************

subroutine bessimag(tiny,r,alpha,n, out)

Subroutine to return the n-th order modified bessel function of a real

argument.

implicit real (a-h,o-y)

implicit complex (z)

x=r*alpha

if (n. EQ.0) then

out=BESSI0(x)

elseif (n.EQ.I) then

out=BESSIl(x)

else

out=BESSI(n,x)

endif

if (ABS(out).LT.tiny) then

if (out.LT.0.0) then

out=-l.0*tiny

else

out=tiny

endif

endif

return

end

D.2: Mathematica TM program sensitivity.m

This computer code was written for use by the Mathematica TM computer mathematics

program [36]. Like the compfreq.f program (above), it calculates the displacements of the

thin, cylindrical shell and the acoustic pressure inside the shell. This code also calculates

the sensitivities of the shell structural displacement and the acoustic response to changes

in lamination angle in the structure.

The solution outlined in Appendix A is again used to describe the motion of the

cylinder. However, this solution is only valid for lamination angles near 0 ° or 90°;
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i.e. angles where the material becomes specially orthotropic. Therefore, the sensitivities

calculated by this code are approximations valid only near either of these two angles.

(*Mathematica program to determine radial displacement of a circular,

cylindrical shell using the Love-Timoshenko anisotropic operator.

Acoustic pressure at an interior point of the cylinder is also calculated

Sensitivity of these values WRT lamination angle psi near psi=0 is

determined. *)

(**)

LT={{itll,lt12,1t13},{it21,1t22,1t23},{it31,1t32,1t33}}

pv={0,0,Fmn}

(**)

(* Define general solution *)

u=Cos[lam*s]*Cos[n*th]

v=Sin[lam*s]*Sin[n*th]

w=Sin[lam*s]*Cos[n*th]

(**)

(* Define circular cylinder geometry *)

h=0.174

a=35.0

1=164.0

pi=3.141592654

(**)

(* Define material properties *)

EII=30.0-I0^6

E22=0.75-10^6

nu12=0.25

nu21=0.00625

G12=0.375"I0^6

rho=1.458-I0^-4

(* Define fluid properties *)

rhof=l.17*10^-7

cnot=13620.0

pref=2.9*10^-9

(**)

(* Define A, B, and D matricies *)

AA={{AII,AI2,AI6},{AI2,A22,A26},{AI6,A26,A66}}

AII=h*QBII

AI2=h*QBI2

AI6=h*QBI6

A22=h*QB22

A26=h*QB26

A66=h*QB66

(*BB={{BII,BI2,BI6},{BI2,B22,B26},{BI6,B26,B66}}

BII=0.5*h*h*QBII

BI2=0.5*h*h*QBI2

BI6=0.5*h*h*QBI6

B22=0.5*h*h*QB22

B26=0.5*h*h*QB26

B66=0.5*h*h*QB66*)

DD={{DII,D12,DI6},{DI2,D22,D26},{DI6,D26,D66}}

Dll=(i/12)*h*h*h*QBll

Dl2=(i/12)*h*h*h*QBl2

Dl6=(i/12)*h*h*h*QBl6

D22=(i/12)*h*h*h*QB22

D26=(i/12)*h*h*h*QB26

D66=(i/12)*h*h*h*QB66

(**)

(* Define the reduced stiffnesses Qij (Jones p 46) *)

Qll=Ell/(l-nul2*nu21)

Q12=nu12*E22/(l-nu12*nu21)

Q22=E22/(l-nu12*nu21)

Q66=GI2

(**)

(* Define global reduced stiffnesses Qij-bar (Jones p 51) *)

QBll=Qll*(Cos[psi])^4+2*(Q12+2*Q66)*Sin[psi]*Sin[psi]*Cos[psi]*Cos[psi] +

Q22*(Sin[psi])^4

QB12=(Qll+Q22-4*Q66)*Sin[psi]*Sin[psi]*Cos[psi]*Cos[psi]+Q12*((Sin[psi]) ^4+

(Cos[psi])^4)
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QB22=Qll*(Sin[psi])^4+2*(Q12+2*Q66)*Sin[psi]*Sin[psi]*Cos[psi]*Cos[psi]+

Q22*(Cos[psi])^4

QB16=(Qll-Q12-2*Q66)*Sin[psi]*Cos[psi]*Cos[psi]*Cos[psi]+

(Q12-Q22+2*Q66)*Sin[psi]*Sin[psi]*Sin[psi]*Cos[psi]

QB26=(Qll-Q12-2*Q66)*Sin[psi]*Sin[psi]*Sin[psi]*Cos[psi]+

(Q12-Q22+2*Q66)*Sin[psi]*Cos[psi]*Cos[psi]*Cos[psi]

QB66=(Qll+Q22-2*Q12-2*Q66)*Sin[psi]*Sin[psi]*Cos[psi]*Cos[psi]

+Q66*((Sin[psi])^4+(Cos[psi])^4)

(* Define Donnell-Mushtari anisotropic operator *)
k=(h*h)/(12*a*a)

itll=(All/A22)*D[D[u,s],s]+2*(A16/A22)*D[D[u,s],th]+(A66/A22)*D[D[u,th],th]+

u*(a*a*h*rho/A22)*om

ItI2=(AI6/A22)D[D[v,s],s]+((AI2+A66)/A22)*D[D[v,s],th]+(A26/A22)*D[D[v, th],th]

it13=(A12/A22)*D[w,s]+(A26/A22)*D[w, th]

it22=(A66/A22)*D[D[v,s],s]+2*(A26/A22)*D[D[v,s],th]+D[D[v, th],th]+

v*(a*a*h*rho/A22)*om

it23=(A26/A22)*D[w,s]+D[w, th]

it33=w+k*((Dll/D22)*D[D[D[D[w,s],s],s],s]+

2*((D12+2*D66)/D22)*D[D[D[D[w,s],s],th],th]+D[D[D[D[w, th],th],th],th])-

w*(a*a*h*rho/A22)*om

it21=(A16/A22)D[D[u,s],s]+((A12+A66)/A22)*D[D[u,s],th]+(A26/A22)*D[D[u, th],th]

it31=(A12/A22)*D[u,s]+(A26/A22)*D[u,th]

it32=(A26/A22)*D[v,s]+D[v,th]

(**)

(* Add Love-Timoshenko modifyer *)

it22=it22+k*(2*(D66/D22)*D[D[v,s],s]+3*(D26/D22)*D[D[v,s],th]+D[D[v, th],th])

it23=It23-k*((D16/D22)*D[D[D[w,s],s],s]+((D12+2*D66)/D22)*D[D[D[w,s],s],th]+

3*(D26/D22)*D[D[D[w,s],th],th]+D[D[D[w, th],th],th])

It32=it32-k*(2*(D16/D22)*D[D[D[v,s],s],s]+((D12+4*D66)/D22)*D[D[D[v,s],s],th]+

4*(D26/D22)*D[D[D[v,s],th],th]+D[D[D[v,th],th],th])

it33=it33+k*(4*(D16/D22)*D[D[D[D[w,s],s],s],th]+

4*(D26/D22)*D[D[D[D[w,s],s],s],th])

(**)

(* Compute acoustic pressure *)

p=Sin[lam*s]*Cos[n*th]*BesselJ[n,alpha*rad]

lower=D[BesselJ[n,(alpha*rbound)],rbound]

alpha=Sqrt[om/(cnot*cnot)-(m*pi)*(m*pi)/(l*l)]
rbound=a

(**)

(* Define applied forced vector *)

cf=i/A22

Fmn=Fo*cf*Sin[m*pi/2]*(l+Cos[n*pi])*(2*a/(pi*1))

Fo=0.3

(**)

(*Define derivatives of the LT matrix WRT psi (lamination angle)*)
dltll=D[itll,psi]

dltl2=D[itl2,psi]

dlt13=D[it13,psi]

(**)

dlt21=D[it21,psi]

dlt22=D[it22,psi]

dlt23=D[it23,psi]

(**)

dlt31=D[it31,psi]

dlt32=D[it32,psi]

dlt33=D[it33,psi]

(**)

(* Remove trig terms from operator *)

tll=Simplify[Expand[itll/u]]

t12=Simplify[Expand[It12/u]]

tl3=Simplify[Expand[itl3/u]]

t21=Simplify[Expand[it21/v]]

t22=Simplify[Expand[lt22/v]]

t23=Simplify[Expand[lt23/v]]

t31=Simplify[Expand[it31/w]]

t32=Simplify[Expand[it32/w]]

t33=Simplify[Expand[It33/w]]

(**)

(*Define lamination angle psi*)

psi=0.0

(**)
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itll=Simplify[tll]

itl2=Simplify[tl2]

itl3=Simplify[tl3]

it21=Simplify[t21]

it22=Simplify[t22]

it23=Simplify[t23]

it31=Simplify[t31]

it32=Simplify[t32]

it33=Simplify[t33]

(**)

dltll=Expand[dltll]

dltl2=Expand[dltl2]

dltl3=Expand[dltl3]

dlt21=Expand[dlt21]

dlt22=Expand[dlt22]

dlt23=Expand[dlt23]

dlt31=Expand[dlt31]

dlt32=Expand[dlt32]

dlt33=Expand[dlt33]

tll=Simplify[dltll]

tl2=Simplify[dltl2]

tl3=Simplify[dltl3]

t21=Simplify[dlt21]

t22=Simplify[dlt22]

t23=Simplify[dlt23]

t31=Simplify[dlt31]

t32=Simplify[dlt32]

t33=Simplify[dlt33]

DLT={{dltll,dlt12,dlt13},{dlt21,dlt22,dlt23} {dlt31,dlt32,dlt33}}

(**)

(* Specify structural location of interest *

th=75.61*(pi/180)

s=(35.1428)*(i/a)

lam=(m*pi*a/l)

(* Specify fluid location of interest *

rad=30.67

(**)

dltll=Simplify[tll]

dltl2=Simplify[tl2]

dltl3=Simplify[tl3]

dlt21=Simplify[t21]

dlt22=Simplify[t22]

dlt23=Simplify[t23]

dlt31=Simplify[t31]

dlt32=Simplify[t32]

dlt33=Simplify[t33]

(**)

LT={[itll,lt12,1t13},{it21,1t22,1t23},{it31,1t32,1t33}}

DLT={{dltll,dlt12,dlt13},{dlt21,dlt22,dlt23},{dlt31,dlt32,dlt33}}

pv={0,0,Fmn}

(**)

(*Define minor determinant for the 3-3 term in the LT matrix*)

coflt33=itll*it22-1t21*it12

(*Define derivative of dlt33 minor determinant*)

dc=Expand[dltll*it22+dlt22*itll-dlt21*it12-dlt12*it21]

dcoflt33=Simplify[dc]

(**)

(*Define derivative of the determinant LT*)

ddlt=dltll*(It22*it33-1t23*It32)+dlt12*(it23*it31-1t33*it21)+

dlt13*(It21*it32-1t22*it31)+dlt21*(it13*it32-1t12*it33)+

dlt22*(itll*it33-1t13*it31)+dlt23*(It12*it31-1tll*it32)+

dlt31*(it12*it23-1t13*It22)+dlt32*(it13*it21-1tll*It23)+

dlt33*(itll*It22-1t12*it21)

ds=Expand[ddlt]

ddlt=Simplify[ds]

(**)

(* Initialize output variables

out=0.0

dout=0.0

pout=0.0

sout=0.0

*)
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(**)

(* Open Output file *)

OpenWrite["sens.out",PageWidth -> 164]

WriteString["sens.out","TITLE=\"Displacement Sensitivity to Ply Angle\"kn"]

WriteString[_sens._ut_"vARIABLES=\"Freq\_\"~6w/~6`y_"_"-6p/-6`y_"_\"w_"_\"p\_n . ]

WriteString["sens.out","ZONE T=k"Analytic Sensitivityk"kn"]

(**)

(* Determine D[Cmn,psi] - add mode shapes *)

Do[

Do[

lam=(m*pi*a/l);

dlt=Det[LT];

(* Compute displacement *)

Cmn=Fmn*coflt33/dlt;

out=out+Cmn*w;

(**)

(* Compute acoustic pressure *)

upper=Cmn*rhof*om;

Dmn=upper/lower;

pout=pout+Dmn*p;

(* Compute displacement sensitivity to lamination angle *)

first=Simplify[dcoflt33*dlt];

second=Simplify[coflt33*ddlt];

bottom=Simplify[dlt*dlt];

dout=dout+(pi/180)*Fmn*(first-second)/bottom;

sout=sout+(pi/180.O)*((rhof*om)/lower)*p*Fmn*(first-second)/bottom

,{m,l,15,2}],{n,0,20,2}]

(**)
om=f*f*4*pi*pi

Plot[Log[10,Abs[out]],{f,ll0,140},AxesLabel -> {"Freq","Log Displacement"}]

Plot[Log[10,Abs[dout]],{f,ll0,140},AxesLabel -> {"Freq","Log Disp Sens"}]

Plot[20*Log[10,Abs[pout/pref]],{f,ll0,140},AxesLabel -> {"Freq","Press (dB)"}]

Plot[Log[10,Abs[sout]],{f,ll0,140},AxesLabel -> {"Freq","Log Press Sens"}]*)

Do[
dummy=20.0*Log[10,Abs[pout/pref]];

qq=ToExpression["f"];

rr=ToExpression["Abs[out]"];

qr=ToExpression["dout"];

pp=ToExq_ression["dummy"];

pq=ToExpression["sout"];

Write["sens.out",qq,

OutputForm[ .... ],qr,

OutputForm[ .... ],pq,

OutputForm[ .... ],rr,

OutputForm[ .... ],pp],

{f,20,50,I}]

Close["sens.out"]

D.3: MSC/NASTRAN Bulk Data File

What follows is a portion of the MSC/NASTRAN bulk data file which was used for

the optimization of the Starship fuselage in the present work. Shown is the formulation

of the design variables, property relations, objective function and constraints for the

problem. Not included in this listing is the finite element data for the model.

The design variables of the problem were normalized such that they varied between

1.0 and 2.0 with a starting point of 1.6. The design variables were related to the lamination

angles of the composite through the DVPREL1 entries in the bulk data deck. The
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objectivefunction wasdefinedusinga DRESP2card(number100).The soundpressure

levels at tennodesin the fluid portion of the modelwereusedas designconstraintsfor

the problem. For additionalinformationregardingthebulk datacardsreferencedin this

listing, the readeris referredto the literature [22, 37]

$ NASTRAN input file created by the PDA MSC/NASTRAN input file

$ translator ( PAT3/MSC-NASTRAN Release 1.4-2 ) on June 14, 1996 at

$ 15:11:49.

SASSIGN OUTPUT2 = 'starship3.opt.op2', UNIT = 12, FORM = FORMATTED

$ Frequency Response Analysis, Direct Formulation, Database

$NASTRAN SYSTEM(146)=I,SYSTEM(196)=I

INIT SCRATCH LOGI=(SCRATCH(400000))

SOL 2O0

TIME 6000

CEND

SEALL = ALL

SUPER = ALL

$ Optimization case control

ANALYSIS = MFREQ

DESOBJ = I00

DESSUB = 500000

TITLE = MSC/NASTRAN job created on 04-Apr-96 at 11:18:01

ECHO = NONE

MAXLINES = 999999999

SET 777=12656,12645,13611,13728,14483,14455,15352,15454,16404,16410

SUBCASE 1

$ Subcase name : complete_loading

SUBTITLE=complete_loading

METHOD(structure) = 123

METHOD(fluid) = 213

FREQUENCY = 1

LOADSET = 1

DLOAD = 2

DISPLACEMENT(SORTI,PUNCH,REAL)=777

$ VELOCITY(SORTI,PUNCH,REAL)=777

BEGIN BULK

PARAM POST -i

PARAM PATVER 3.

PARAM AUTOSPC YES

PARAM PRGPST NO

PARAM COUPMASS 1

PARAM K6ROT 0.

PARAM WTMASS i.

PARAM,NOCOMPS,-I

PARAM G 0.06

PARAM OPTEXIT 7

INCLUDE 'tet4.INC'

EIGRL 123 500 0

EIGRL 213 200 0

FREQI 1 185. i. 25

$ Elements and Element Properties for region : main-cabin

$ Composite Property Record created from P3/PATRAN composite material

$ record : MATRL.16

$ Composite Material Description : Created by neutral file import

PCOMP 7 -.4135 .06

+ MU 6 .0085 45. YES I0 .01 90. YES

+ MV i0 .01 0. YES i0 .01 90. YES

+ MW 5 .75 0. YES i0 .01 90. YES

+ MX i0 .01 0. YES i0 .01 90. YES

+ MY 6 .0085 45. YES

$ Optimization parameters

$ Define design variables (lamination angles, p-naught)

DESVAR 1 anglel 1.6 1.0 2.0 0.30

DESVAR 2 angle2 1.6 1.0 2.0 0.30

DESVAR 3 angle3 1.6 1.0 2.0 0.30

+ MU

+ MV

+ MW

+ MX

+ MY
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DESVAR 4 angle4 1.6 1.0 2.0 0.30

DESVAR 5 angle5 1.6 1.0 2.0 0.30

DESVAR 6 angle6 1.6 1.0 2.0 0.30

DESVAR 7 angle7 1.6 1.0 2.0 0.30

DESVAR 8 angle8 1.6 1.0 2.0 0.30

DESVAR 9 Po i00.0 40.0 150.0 0.15

$ Relate design varibles to property values for main cabin region

DVPRELI 1 PCOMP 7 14 -225.0

+ ZZZZZA 1 180.0

DVPRELI 2 PCOMP 7 18 -180.0

+ ZZZZZB 2 180.0

DVPRELI 3 PCOMP 7 24 -90.0 -270.0

+ ZZZZZC 3 180.0

DVPRELI 4 PCOMP 7 28 -180.0

+ ZZZZZD 4 180.0

DVPRELI 5 PCOMP 7 38 -180.0

+ ZZZZZE 5 180.0

DVPRELI 6 PCOMP 7 44 -90.0 -270.0

+ ZZZZZF 6 180.0

DVPREL1 7 PCOMP 7 48 -180.0

+ ZZZZZG 7 180.0

DVPRELI 8 PCOMP 7 54 -225.0

+ ZZZZZH 8 180.0

$ Relate

DVPRELI

+ ZAZZZA

DVPRELI

+ ZAZZZB

DVPRELI

+ ZAZZZC

DVPRELI

+ ZAZZZD

DVPRELI

+ ZAZZZE

DVPRELI

+ ZAZZZF

DVPRELI

+ ZAZZZG

DVPRELI

+ ZAZZZH

$ Define

DRESP2

+ ZZZZZI

DEQATN

DEQATN

+ ZZZZZA

+ ZZZZZB

+ ZZZZZC

+ ZZZZZD

+ ZZZZZE

+ ZZZZZF

+ ZZZZZG

+ ZZZZZH

design varibles to property values for main cabin doubler region

ii PCOMP 4 14 -225.0 + ZAZZZA

1 180.0

12 PCOMP 4 18 -180.0 + ZAZZZB

2 180.0

13 PCOMP 4 24 -90.0 -270.0 + ZAZZZC

3 180.0

14 PCOMP 4 28 -180.0 + ZAZZZD

4 180.0

15 PCOMP 4 48 -180.0 + ZAZZZE

5 180.0

16 PCOMP 4 54 -90.0 -270.0 + ZAZZZF

6 180.0

17 PCOMP 4 58 -180.0 + ZAZZZG

7 180.0

18 PCOMP 4 64 -225.0 + ZAZZZH

8 180.0

objective function (minimize Po)

i00 Po 999 + ZZZZZI

DESVAR 9

999 obj(Po)=Po

400000 f(Po,x,y)=lO.O*LOGlO((x*x+y*y)/(8.41e-18))/Po

$ Define system response

$ First window, port and

DRESPI 100000 AAAAAA

DRESPI 150000 IAAAAA

DRESP2 200000 BAAAAA

+ AAAAAA DESVAR 9

+ BAAAAA DRESPI 100000

DRESPI 100001 AAAAAB

DRESPI 150001 IAAAAB

DRESP2 200001 BAAAAB

+ AAAAAB DESVAR 9

+ BAAAAB DRESPI 100001

$ Second window, port and

DRESPI 100002 AAAAAC

DRESPI 150002 IAAAAC

DRESP2 200002 BAAAAC

+ AAAAAC DESVAR 9

+ BAAAAC DRESPI 100002

DRESPI 100003 AAAAAD

DRESPI 150003 IAAAAD

DRESP2 200003 BAAAAD

+ AAAAAD DESVAR 9

+ BAAAAD DRESPI 100003

locations

starboard side

FRDISP 1 12656

FRDISP 7 12656

400000 +

+ BAAAAA

150000

FRDISP 1 12645

FRDISP 7 12645

400000 + AAAAAB

+ BAAAAB

150001

starboard side

FRDISP 1 13611

FRDISP 7 13611

400000 + AAAAAC

+ BAAAAC

150002

FRDISP 1 13738

FRDISP 7 13728

400000 + AAAAAD

+ BAAAAD

150003

starboard side

FRDISP 1 14483

FRDISP 7 14483

$ Third window, port and

DRESPI 100004 AAAAAE

DRESPI 150004 IAAAAE
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DRESP2 200004 BAAA E 400000

+ AAAAAE DESVAR 9

+ BAAAAE DRESPI 100004 150004

DRESPI 100005 AAAAAF FRDISP

DRESPI 150005 IAAAAF FRDISP

DRESP2 200005 BAAAAF 400000

+ AAAAAF DESVAR 9

+ BAAAAF DRESPI 100005

$ Fourth window, port and

DRESPI 100006 AAAAAG

DRESPI 150006 IAAAAG

DRESP2 200006 BAAAAG

+ AAAAAG DESVAR 9

+ BAAAAG DRESPI 100006 150006

DRESPI 100007 AAAAAH FRDISP

DRESPI 150007 IAAAAH FRDISP

DRESP2 200007 BAAAAH 400000

+ AAAAAH DESVAR 9

+ BAAAAH DRESPI 100007

$ Fifth window, port and

DRESPI 100008 AAAAAI

DRESPI 150008 IAAAAI

DRESP2 200008 BAAAAI

+ AAAAAI DESVAR 9

+ BAAAAI DRESPI 100008

DRESPI 100009 AAAAAJ

DRESPI 150009 IAAAAJ

DRESP2 200009 BAAAAJ

+ AAAAAJ DESVAR 9

+ BAAAAJ DRESPI 100009

$ Define constraint cards

DCONSTR 1 200000

DCONSTR 2 200001

DCONSTR 3 200002

DCONSTR 4 200003

DCONSTR 5 200004

DCONSTR 6 200005

DCONSTR 7 200006

DCONSTR 8 200007

DCONSTR 9 200008

DCONSTR i0 200009

DCONADD 500000 1

+ ZZZZZZ 8 9

DSCREEN EQUA -0.2

DOPTPRM DESMAX 11

+ ZZZZZY DXMIN 0.075

INCLUDE 'structure.dat'

INCLUDE 'fluid.dat'

150005

starboard side

FRDISP

FRDISP

400000

150007

starboard side

FRDISP

FRDISP

400000

150008

FRDISP

FRDISP

400000

150009

on DRESP2 entries

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

2 3 4

i0

P1 1 P2

DPMIN 0.i0

15

+ AAAAAE

+ BAAAAE

14455

14455

+AAAAAF

+ BAAAAF

15352

15352

+ AAAAAG

+ BAAAAG

15454

15454

+ AAAAAH

+ BAAAAH

16404

16404

+ AAAAAI

+ BA3AAI

16410

16410

+ AAAAAJ

+ BAAAAJ

7 + ZZZZZZ

+ ZZZZZY
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